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 The world is an ever-changing, dynamic environment. If robots and other intelligent 

systems are to find ways to cope with and reason about the world adequately, they must be 

capable of understanding these dynamic features. This dissertation examines the need for a 

centralized knowledge store capable of storing information that is both spatial and temporal in 

nature. The interface of a new and unique architecture to handle the exchange of dynamic 

information and questions about the future state of that information is presented. A novel 

algorithm, called the Statistics-Based Nth Order Polynomial Predictor (SNOPP), is also 

developed which allows state prediction of almost any time-variant data. 

Each of these contributions is demonstrated through the use of a reference implementation. 

The author’s reference implementation is done using the Joint Architecture for Unmanned 

Systems (JAUS), a widely accepted, open robotics architecture developed for use in defense 

programs.  

The architecture and predictor are tested using a real-world sensor algorithm deployed on 

an autonomous vehicle at the University of Florida’s Center for Intelligent Machines and 

Robotics (CIMAR). Findings and results of a these tests are given which examine the behavior of 
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the architecture and novel prediction algorithm in a variety of scenarios involving different time-

variant data types. 

The Dynamic World Model architecture and the SNOPP algorithm provide significant 

contributions to the future of robotics. Many robotic problems, including decision making, health 

monitoring and path planning, stand to benefit from better understanding of the dynamic nature 

of both the robot and its environment. This dissertation provides a framework in which many of 

these and other problems may be addressed and summarily solved by future robotic engineers. 
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CHAPTER 1 
INTRODUCTION 

The world of mobile, intelligent robotics is expanding rapidly. As the shape, size, function 

and capabilities of these systems change, so does the complexity. One of the more complex 

functions to be addressed in recent years is that of modeling and understanding more fully the 

environment in which the robot operates. This dissertation documents the author’s work in that 

area, including background literature material, theoretical details and research results from a 

reference implementation of the system developed. The focus of the author’s work is on 

modeling dynamic information and predicting the future state of that information.  

Two primary contributions are put forth in this document. First, a framework in which a 

large variety of problems can be addressed and solved is presented, both theoretically and in 

detail. Second, in the effort to implement and test that framework, a novel algorithm named the 

Statistics-Based Nth Order Polynomial Predictor (SNOPP) is developed with which dynamic 

attribute prediction is possible; the results of which are presented and discussed. 

Motivation and Problem Statement 

As robots move out of the lab and into the real world they are forced more and more often 

to deal with the constraints of that world. One of these constraints which have not historically 

been dealt with is that the nature of the real world is to exhibit many dynamic characteristics. 

Historically, most mobile robot systems have assumed the world to be relatively static and 

constant. If a dynamic object was present, it would be treated as a static object with respect to 

any planning or behavioral efforts. 

In more recent work, development has begun of systems which address dynamic elements 

of the world. Particular effort has been paid to the problem of planning motion within an 

environment which comprises a combination of static and dynamic elements. Research has also 
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been conducted in using prediction and estimation techniques in the area of autonomous 

behavior generation and mission planning. 

However, a weakness of each of these approaches is that the data is segregated in such a 

way that the dynamic information can only be used to accomplish a specific task. The author’s 

work was focused on developing a framework within which any of these and many other tasks 

can be completed both separately and cooperatively by an autonomous system. 

Proposed Solution 

To accomplish this task, the author developed a knowledge store capable of storing and 

querying dynamic information. The knowledge store is responsible for the storage, evaluation 

and prediction of the future state for any defined dynamic information. This framework supports 

a variety of possible modeling or prediction algorithms with which a particular item can be 

modeled. To accomplish this, the sensing or reasoning portion of the robot which seeks to store 

the information will specify the methodology which the knowledge store should use. The 

following is an overview of the steps involved in the creation and use of a series of dynamic 

information. For the sake of this example one should assume the dynamic information is the 

position of some moving object. 

 A sensing element on the robot determines the current position of some moving object. 
How this information is determined is not significant to the knowledge store’s operation. 

 The sensing element creates within the knowledge store the observed object and designates 
it as “dynamic.” It also designates the prediction/estimation algorithm (of the ones 

possible) which the knowledge store should use in modeling the new object. 
 As new position information becomes available, the sensing element updates the 

knowledge store with the latest information. 
 As planning, decision making, or other sensing elements seek to complete their specialized 

goals, they query the knowledge store for the current or future position of the object. The 
knowledge store uses the designated estimation algorithm to produce future position 
estimates. 

 The sense and planning elements continue to update and use the information until the 
object is no longer sensed or of concern to any planning element. 
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It was beyond the scope of the work presented herein to address evaluation within the 

knowledge store of the correct selection or appropriateness of the estimation algorithm applied. 

Instead it is assumed that the sensing element which has identified the information of interest 

knows the best algorithm which should be applied. For this work, the prediction algorithms 

available in the knowledge store were defined a priori and agreed upon by the sensor and 

knowledge store developers. 

Research Environment 

The research documented herein was done at the Center for Intelligent Machines and 

Robotics (CIMAR) at the University of Florida. CIMAR has been conducting research in 

autonomous vehicles and robotics for over 15 years and has seen a large amount of success as 

competitors in the Defense Advanced Research Projects Agency (DARPA) Grand Challenge in 

both 2004 and 2005 (Figure 1-1 is the NaviGATOR, CIMAR’s 2005 entry in the DARPA Grand 

Challenge). Much of this work is directly related to CIMAR’s involvement and support of the 

robotic activities of the Air Force Research Lab (Tyndall Air Force Base, Panama City, FL). 

CIMAR has also actively been involved with the Joint Architecture for Unmanned Systems 

(JAUS) Working Group during the time of author’s work. This architecture has provided a solid 

and reliable foundation on which new ideas and concepts can quickly be implemented and tested 

in the field. 

The NaviGATOR platform is now in use as the primary autonomous test bed at CIMAR. 

It’s a robust and proven platform which includes a variety of sensor systems. It also provides 

room for ample computing hardware nodes which allow for the rapid development and 

deployment of new technologies. The system is completely JAUS based and supports a number 

of essential JAUS components such as the Global Position Sensor and the Velocity State Sensor 

which are critical to this research (see [1] for more details on these components and JAUS in 
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general). The NaviGATOR also supports several pre-installed LADAR systems which were used 

in support of this research. The modularity of the JAUS architecture allows researchers at 

CIMAR to add and remove non-critical components from the system at will. 

CIMAR also has recently developed a vast library of software to support its recent JAUS 

activities both within the working group’s activities and independent research. This software 

library, written in C, decreases the development time of reliable and efficient JAUS components. 

The work done in this research made use of these libraries to evaluate a reference 

implementation. Figure 1-2 shows a dependency diagram of the CIMAR JAUS implementation 

used in this research. 
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Figure 1-1 The NaviGATOR, CIMAR’s entry in the 2005 DARPA Grand Challenge. 
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Figure 1-2 CIMAR JAUS Libraries
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CHAPTER 2 
BACKGROUND AND LITERATURE REVIEW 

Work done in this dissertation has laid the foundation for work which can be done in many 

new and exciting areas within the realm of autonomous and unmanned systems. The Dynamic 

Environment Concerns section outlines some of the fields in which dynamic objects and 

attributes are of interest to robotic algorithms. The Motion Prediction and Modeling section 

provides an overview of some of the many predictive algorithms in use by robotic systems. 

Lastly, the Database Technologies sections aims to address the methodologies by which this 

dynamic and spatial information may be stored and made available to a variety of modules 

simultaneously. A significant contribution of the author’s work is that it forms a foundation for 

future work within the Joint Architecture for Unmanned Systems (JAUS), a standardized 

robotics architecture. The JAUS and the World Modeling Message Set section examines the 

structure of the architecture and the current set of world modeling functionality available in 

JAUS. 

Dynamic Environment Concerns 

Mobile robots have been slowly moving out of research labs and into the real world since 

the days of Shakey [2]. In recent years, many of the traditional problems which faced so-called 

field robotics have been solved with increasing reliability. These include many of the actions 

along the “sense-plan-act” cycle that most robotic systems demonstrate. However, most of this 

success has been seen only in the realm of static environments. The real world, and the world 

researchers ultimately want their robots to operate in, is dynamic. The real world is abundant of 

full of dynamic parameters and attributes with which robots need to understand and cope. For 

this reason, in order to sufficiently operate in this real world, the “sense” and “plan” segments of 

the cycle must be able to reason about and handle these dynamic parameters. 
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The following are three major areas of interest in which the incorporation of dynamic 

objects and predictive estimation theories have been applied. In each, the dynamic knowledge 

has shown an improvement in the system’s ability to address its individual concern. 

Localization 

A primary challenge of any autonomous or semi-autonomous robot is to determine its 

location within the world. In the realm of outdoor robotics, this is often done through the use of 

some form of global positioning system (GPS) combined with an inertial navigation system 

(INS). However, GPS typically does not work for autonomous robots deployed in indoor 

environments. A popular accepted approach to the problem of locating a robot within its 

environment is that of Simultaneous Localization and Mapping (SLAM) which was first outlined 

in [3]. Since then SLAM has been extensively used in a variety of environments – both 2D and 

3D. The primary goal of a SLAM algorithm is to provide an estimate of the robot’s position 

through feature extraction and mapping. Most of this work is based on probabilistic methods 

which determine a maximum likelihood for the vehicle’s position and orientation. 

However, much of the research done has operated under the assumption that the robot’s 

environment is static [4]. In [4] is it suggested that if the dynamic objects can be filtered out, the 

results of the SLAM algorithm will be better. It is also pointed out that while the SLAM 

algorithms are interested in removing the dynamic obstacles, the detection and tracking of 

moving objects (DATMO) algorithms are especially interested in exactly the data that is to be 

filtered. Therefore SLAM with DATMO is presented with favorable results [4]. 

Other researchers have worked on various other methods to improve SLAM results 

through careful consideration of dynamic objects. The work has often been applied to problems 

dealing with the tracking of people [5, 6]. A thorough overview of many of these approaches is 

presented in [7]. Many of these approaches make use of various probabilistic tracking and 
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estimation techniques to intelligently estimate which sensor reading should be filtered when 

considering dynamic objects. 

Motion Planning 

Planning the future state of an autonomous agent is the essence of the mobile robot 

problem. While the future state can consist of a number of things, many times the focus on a 

mobile robot is to plan its behavior, or path, within the environment. In the case of a static or 

presumed static environment, this problem has to some extent been solved [8]. The solutions to 

these problems most often align themselves along two fronts, those that find an entire path 

solution before starting motion, and those that react only to the current world state. So called 

deliberative and reactive motion planners each have associated strengths and weaknesses (the 

likes of which are outside the scope of this discussion), however most do not treat dynamic 

objects in some prescribed fashion. Other work in the area of motion planning has focused on 

iterative techniques such as [9], however these too do not take into account the fundamental 

nature of dynamic objects. That is predicting and compensating for not only the position or 

velocity, but the estimated position or velocity of the object at some future point in time. 

The most recent work being done in motion planning is beginning to address this three 

dimensional problem; that is X, Y and time. Initial work in this area concentrated on treating 

objects as having constant velocity [10]. Later work is beginning to build beyond the constant 

velocity assumption and addressing so-called Non-Linear Velocity Objects (NLVO) [11]. These 

approaches and others extend many of the deliberative and iterative planning techniques 

developed for static problems to allow compensation for moving objects [12-14]. 

Decision Making and Behavior Control 

Motion planning is a significant part of the autonomous mobile robot’s job. However, 

higher level decision making and behavior generation services also face the challenges of a 
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dynamic and changing environment. Some robotic architectures, notably 4D/RCS [15], dictate 

the inclusion of prediction and simulation capabilities at each layer of the architecture to 

facilitate future state estimation. Figure 2-1 illustrates the 4D/RCS architecture and the way 

prediction and simulation capabilities are layered.  

This 4D/RCS architecture has seen use in a number of different autonomous systems. The 

PRIDE (PRediction in Dynamic Environments) architecture is based on the 4D/RCS scheme and 

has been developed specifically to address on-road autonomous driving [16]. PRIDE makes use 

of a multi-resolution, hierarchical architecture to incorporate different prediction methodologies 

at different levels of the framework. Results from simulation experiments using PRIDE have 

shown that different predictive routines can be combined to successfully plan at varying time 

horizons for situation assessment tasks [16, 17]. 

Similar on-road work has also been done with predictive behavior generation in the field of 

driver assistance [18]. The work done therein concentrates on an architecture whereby the 

motivations, goals, plans and probable paths of surrounding vehicles are used to generate 

predicted situations. Situations are given levels of probability of occurring and all possible 

situations are fused for decision making. This work also makes use of a database or knowledge 

store as the fundamental storage and distribution of dynamic data to other modules within the 

architecture. Figure 2-2 shows the architecture in use by [18] and [19] for intelligent driver assist 

problems. 

While estimations and predictions of future states or events are of significant importance to 

decisions about the actions of other mobile agents, it is also applicable to the study of the robot 

itself. MENSA (Mission Effectiveness and Safety Assessment) is an architecture designed to 

handle primarily health monitoring and contingency resolution [20]. MENSA aids a robot’s 



 

26 

ability to reason about itself and arrive at decisions based on its current state, predicted states and 

mission goals. MENSA is comprised of four modules – sensor monitoring, mission assessment, 

fault diagnosis, and capability assessment. Figure 2-3 provides a graphical view of the 

architecture. Central to these modules is a shared knowledge store. In the MENSA architecture, 

predicted sensor values are performed in the sensor monitoring module. 

Motion Prediction and Modeling 

There exists a multitude of prediction and modeling algorithms in use for both robotic and 

non-robotic systems. The following is a survey of various tracking and estimation techniques 

presented in the literature which have been applied to robots. Many of these approaches rely on 

some a priori knowledge of either the environment or the object being tracked, however some do 

not.  

In [21] a constant velocity model is used to estimate the target’s motion in a tracking 

problem. The constant velocity model uses a short history of the target’s motion and extrapolates 

velocity. To improve the performance of the system, the uncertainty in the direction of the 

velocity is modeled as a Gaussian distribution. The heading estimate is further improved by 

incorporating known world information (gaps) into the estimator. The work has shown that the 

use of velocity estimation compared to similar work without consideration of the dynamics has 

improved the performance of the tracking algorithm. 

In [22] the problem of motion estimation is considered in a fixed environment. The 

problem is broken into two stages, a learning phase and an estimation phase. In the learning 

stage, data about the trajectories of real agents moving about the environment is captured. This 

represents the training data set. The training data is clustered, yielding a series of possible 

trajectories in the environment. The second phase is the motion estimation phase. In the motion 

estimation phase, the likelihood that some observed, partial trajectory is part of one of the 
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trajectories previously learned are evaluated. The estimated motion is then the trained trajectory 

which has the maximum likelihood. This particular approach depends heavily on the fact that 

certain paths through a particular environment might be preferred over others. It also embeds an 

assumption that the environmental constraints which influence these preferred paths tend to 

remain constant. 

In [23] the problem of motion prediction is applied to the RoboCup problem (where a team 

of robots is challenged with playing soccer against an opposing team of robots). One problem 

presented in particular is modeling the motion of the soccer ball. In order to predict the behavior 

of the ball two different models are used. When the ball is rolling freely a neural network is used 

to predict its motion. When the ball is not rolling freely its motion is estimated through the use of 

a collision model between it and the robots. The combination of these models was shown to have 

better results for the prediction of the ball’s motion than previous work done using a Kalman 

filter. 

Prediction of the ball for RoboCup has also been studied in [24]. Here a grey prediction 

algorithm is used. The grey predictor has the advantage of needing to know none of the internal 

structure or characteristics of the system being observed. Therefore it is able to model and 

predict the trajectory of the ball sufficiently. This work also implements a switching behavior to 

the algorithm. Depending on how far the robot is from the ball, the prediction length is modified 

to reflect the increased time it would take the robot to intercept the ball. Simulated results show 

an improved performance in the system with the switching grey predictor. 

In [25], an algorithm for the prediction of an object’s position and orientation is presented 

which makes use of an autoregressive (AR) model. The complete algorithm for position and 

orientation estimation is presented in separate parts, first dealing with the translational motion 
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then the rotational. The results presented show good performance of the system in estimating 

motion both with varying and uniform acceleration. 

The prediction work done in [26] focuses primarily on estimating the motion of other 

intelligent agents. Here an “Intelligent Prediction” algorithm is developed. This approach takes 

into account the dynamic and kinematic characteristics observed along with some a priori 

knowledge of the agent’s goals and behaviors. 

In [23] Kalman filtering techniques are presented to solve the problem of estimating the 

position and orientation of moving obstacles. An advantage of the Kalman filtering approach is 

that the estimator begins with the first step, whereas most other approaches require some 

minimum data history to yield favorable estimates. Two Kalman filters are developed, one for 

translational estimation and the other for rotational. 

Work done in [27] focuses mainly on the use of predictive motion in building a motion 

planner. However, it does outline a method for estimated motion based on a Polynomial Neural 

Network (PNN). The PNN is seeded with the moving object’s position at the current and 

previous time steps and the output is the estimated position of the object at the next time step. As 

in most neural networks, the performance of the system is very dependent on a large set of 

training data. 

Database Technologies 

An important contribution of this work is to take the storage and prediction elements of 

spatial information and co-locate them into one service on the mobile platform. Current database 

systems, both object-relational and relational, can be extended to support spatial and temporal 

capabilities (see Table 2-1 for more details). Recent advances in spatiotemporal and moving 

objects databases provide a framework for the query and storage of objects that move spatially 

within the environment. 
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Spatial Database Technologies 

A spatial database is a relational or object-oriented database which has been enhanced to 

support spatial data and perform spatial operators on that data (for a through technical discussion 

of spatial databases and their operators see [28]). Spatial data is usually divided into two primary 

categories, raster and vector. The focus of the work in this research is in the storage and 

interpretation of vector representations. Vector data is typically divided into one of three types: 

points, lines and polygons. In general, these objects are not restricted to 2D representations and 

can include a mixture of planar and non-planar data. An important aspect of spatial database is 

not only the storage of spatial data types, but the ability to perform logical operations on that 

data. Usually these operations include at minimum relational operations between entities such 

as touches (any point of both entities are equal), intersect (entities intersect such that there is a set 

of collective points shared), or within (one entity completely encapsulated within the interior of 

another). Figure 2-4 describes these operators. 

An important feature of most commercial spatial databases is that of spatial indexes. A 

spatial index makes use of the spatial relationships among data members to improve the 

performance of queries and spatial operators [28]. Table 2-1 lists several commonly available 

relational and object-relational database systems and the various spatial options available for 

each. Several other factors are presented in Table 2-1 including 3D data support, raster data 

support, compliance with the standard outlined by the OpenGIS Consortium (OGC) in [29] and 

relative system costs. 

Moving Objects Databases 

Recent work in DBMSs has concentrated more on the moving object problem. In a Moving 

Object Database (MOD), information about geometries that change over time are stored. The 
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MOD is an extension to the spatial database and the temporal database [30]. MODs are 

comprised primarily of two distinct parts, the query language and the spatio-temporal data types.  

Early work on MODs could not make use of DBMS systems due to limitations on indexing 

and data types. Two significant efforts in the early development of MODs sought to overcome 

these limitations, namely the Databases fOr MovINg Objects (DOMINO) project [31-33] which 

implements the Moving Objects Spatio-Temporal (MOST) data model [34, 35]. The MOST data 

model introduced the concept of a dynamic attribute. This is an attribute whose value changes 

with respect to time without being explicitly updated [34]. These efforts sought to solve many of 

the fundamental DBMS questions in dealing with moving objects. To simplify the problems, 

these efforts made use of a number of assumptions [30]. 

Several of the assumptions hinder the technology’s use in robotics. Paramount to these is 

an assumption that the moving object will update the database with new information whenever 

the object’s position deviates by some threshold. Based on this assumption, uncertainty in the 

object’s position is based on knowing that it is at most “threshold” distance away from its last 

known position. The MOST model also supports two methods to model the object’s motion, first 

through the use of a motion vector. This vector can be any function with respect to time that 

describes the future motion of the attribute it describes. Higher-level information can also be 

used. In the case of vehicles, it is more realistic to assume that the vehicle travels along some 

road network. If the possible road network is known, then the motion of the vehicle can be 

constrained to that network [30]. 

The significant work done to date in MODs concentrates on the storage, modeling and 

querying of moving objects, including work on uncertainty analysis [36]. However, little to no 

work has been done to include within the MOD the ability for the database to develop it own 



 

31 

model of the attribute and reason about its future. Instead a MOD relies on a close relationship 

with the moving object itself to provide that information. 

JAUS and the World Model Message Set 

The Joint Architecture for Unmanned Systems (JAUS) is an effort to develop an upper 

level design for the various interfaces in the realm of unmanned systems. The initiative started in 

1998 when the Office of the Secretary of Defense charted what was then the Joint Architecture 

for Unmanned Ground Vehicles Working Group (JAUGS WG). JAUGS has since transitioned to 

encompass the realm of all unmanned systems. It is the goal of the working group to develop a 

framework which 

 aids in procurement of robotics systems by ensuring mutual compatibility, 
 encourages industry competition without fear of being locked in to proprietary solutions, 
 enables developers to focus on application needs rather than basic infrastructure, and 
 reduces the burden of technology transfer between programs. 

 
JAUS defines a component-based messaging architecture which defines the data format 

and message specifications for communicating between different computing nodes and 

processes. It defines an architectural layout of System, Subsystem, Node and Component which 

correspond, respectively, to a combination of robotic resources, a particular robot or control unit, 

a computing resource and a software process. Figure 2-5 shows the JAUS topology. Various 

components are defined in the JAUS Reference Architecture (RA) for well-defined robotic 

software roles [1]. These include global position, velocity feedback, actuator control and 

configuration management. The RA includes a definition of various data types used to 

communicate between components. It also includes a set of messages which define the way in 

which information is passed between components and the nature in which this communication 

takes place. 
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Much work has been done in recent years to progress JAUS into emerging areas of robotic 

research. One key area of interest to the JAUS Working Group (WG) has been in the area of 

World Modeling. What follows is the definition of a World Model as adopted by the JAUS 

standard. 

The world model is the intelligent system’s best estimate of the state of the world. The 

world model includes a database of knowledge about the world, plus a database 
management system that stores and retrieves information. The world model also contains a 
simulation capability that generates expectations and predictions. The world model 
provides answers to requests about the present, past, and probable future states of the 
world. The world model provides this information service to the behavior generation 
system element in order to make intelligent plans and behavioral choices. It provides 
information to the sensory processing system element to perform correlation, model 
matching, and model-based recognition of states, objects, and events. It provides 
information to the value judgment system element to compute values such as cost, benefit, 
risk, uncertainty, importance, and attractiveness. The world model is kept up to date by the 
sensory processing system element. [37] 

As can be seen, one of the primary goals of the World Model, as defined above, is to 

provide a “simulation capability.” However, work done to date within JAUS deals solely with 

the query and storage of static geospatial data [38]. The work done in this dissertation focuses on 

vector data representation, therefore the area of interest in the JAUS documentation is that which 

deals with the World Model Vector Knowledge Store. The messages and capabilities therein 

support the following capabilities: 

 Create point, line or polygonal object(s). These objects can contain a number of feature 
classes [38] and each feature class may contain a single feature class attribute. 

 Delete an object or a group of objects in an area. 
 Query for objects by region, id, feature class, attribute or any combination thereof. 

 
This core set of query and storage functionality, along with the developed spatial data 

types provided the foundation for the implementation detailed in Chapter 4. The JAUS World 

Model message set also establishes a set of terminology including feature class and feature class 
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attribute which are used extensively in the author’s implementation. More details about these can 

be found in [38].  

While much of the basic functionality is retained, many of the existing JAUS messages 

needed to be changed or extended to support the architectural requirements. The modified JAUS 

message set, as used by the author, is included as Appendix A.  
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Figure 2-1  Illustration of the 4D/RCS architecture to include World Modeling in direct support 

of sensing, behavior generation and value judgment activities. [15] 

 

 

Figure 2-2 System architecture for decision making in driver assistance system [19] 

 



 

35 

 
Figure 2-3 MENSA architecture for robot self awareness [20] 

Figure 2-4 Spatial operators Touches, Intersect and Within. 
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Figure 2-5 JAUS System Topology 
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Table 2-1 Common Spatial Database Management Systems (DBMS) [39-47] 

DBMS OS Spatial Extension 

OGC 

Compliance 

Spatial 

Index 

Coordinate 

System 3D Raster Cost 

Oracle Linux, Windows Oracle Spatial Compliant ● ● ● ● $$$$$ 

  Oracle Locator Compliant ● ● ● - $$ 

    ArcSDE Compliant ● ● ● ● $$$ 

DB2 Linux, Windows DB2 Spatial 
Extender Compliant ● ● - - $$ 

    ArcSDE Compliant ● ● ● ● $$ 

MS Access Windows GeoMedia - ● ● ● - $ 

MS SQL Server Windows SpatialWare Implementing ● ● ● - $ 

  GeoMedia - ● ● ● - $ 

    ArcSDE Compliant ● ● ● ● $$ 

Informix Linux, Windows Spatial Datablade Compliant ● ● ● - $$ 

    ArcSDE Compliant ● ● ● ● $$$ 

PostgreSQL Linux, Windows PostGIS Compliant ● ● ● - Open-Source 

MySQL  Linux, Windows Native - ● - - - Open-Source 
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CHAPTER 3 
THEORETICAL APPROACH 

The storage and querying of dynamic information is a challenging problem. In this chapter 

the author describes two parts of the unique problem. First, the architectural requirements of a 

centralized knowledge store are discussed and a solution proposed. Following that, a unique 

prediction algorithm for estimating the future state of information without a priori knowledge of 

the behavior of the system is described. Through the combination of the architecture described 

and use of various prediction methods like the one described herein, a vast array of dynamic and 

temporal knowledge store problems may be solved. 

Spatiotemporal World Model Architecture 

The use of knowledge stores as centralized repositories for information is not a new 

concept in either computer science or robotics. There is a long tradition of knowledge stores such 

as databases being used in applications ranging from financial to stock control. Also, in robotics, 

common, centralized knowledge representations have been successful in a number of 

robotic systems. However, few of these systems have attempted to cope with the various 

demands of both spatial and temporal knowledge. Further, providing predictive behavior about 

the future state of information is something only recently explored by the moving objects 

database (MOD) researchers. 

In developing an architecture for use on a robotic system, several constraints and concerns 

are of importance. Foremost, is the flexibility of the interface. The kind of spatiotemporal data most 

often encountered on an intelligent robotic platform is from some form of sensing capability. It is 

then appropriate to design the interface to the knowledge store in such a way as to cater to the 

capabilities of most sensing systems. Second, the architecture should scale with the scope of 

the robot and its mission. From simple vacuuming robotic systems for home use to a fleet of 
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robotic platforms deployed together, the spatiotemporal knowledge store should provide a 

solution that suits the needs of both. To those ends, the architecture presented here provides a 

flexible yet robust interface which allows the robotic system designer to make best use of the 

information available on the system. It provides capabilities to create objects, modify them, 

delete them and ask questions about their past, present and future state. Each object is assigned a 

unique object ID for identification purposes either by the knowledge store or the client. Objects 

may have associated with them both geospatial information and attribute information. The 

geospatial information describes the geometry, position and orientation of an object in the 

context of the world. The attribute information can be used to hold any other significant 

information about the object which may include but is not limited to color, velocity, height, 

classification and/or name. 

A novel feature of this architecture is the capacity for multiple estimation techniques for 

object and attributes prediction. Rather than attempt to apply a single prediction technique to all 

objects, the knowledge store is flexible in allowing the client to specify which technique to use. 

Current work has focused on having a collection of prediction techniques defined a priori which 

a knowledge store client can select from in creating or modifying objects and their attributes. 

This capability extends the flexibility and scalability of the architecture by allowing particular 

prediction techniques to be created and scaled to the particular application of interest; without the 

need to modify or change the overall architecture and message set. 

Figure 3-1 shows the various input and output messages for the architecture. Each message 

and its various fields are described below in detail. 

Request Object Id Block Message 

 REQUEST ID 

 BLOCK SIZE 
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The Request Object Id Block message is used by the knowledge store client to request a 

range of object IDs which it may use.  The REQUEST ID is used by the knowledge store to track 

any response to the client. The BLOCK SIZE field indicated the number of object IDs the client is 

requesting. 
Assign Object Id Block Message 

 REQUEST ID 

 BLOCK SIZE 

 OBJECT IDS 

 

The Assign Object Id Block message is sent in response to a Request Object Id Block 

message.  This message includes the REQUEST ID of the original request. The BLOCK SIZE field 

is the size of object ids allocated by the knowledge store for use by the requesting client. The 

OBJECT IDS field is a list of the object ids allocated. 

Create Object(s) Message 

 REQUEST ID 

 OBJECT COUNT  

 OBJECT ID (OPTIONAL) 

 OBJECT ESTIMATOR TYPE (OPTIONAL) 

 OBJECT TIME STAMP (OPTIONAL) 

 OBJECT GEOSPATIAL INFORMATION  

 OBJECT ATTRIBUTES INFORMATION 

 

The Create Object(s) message includes allows the client to create one or more unique 

objects within the knowledge store. The REQUEST ID field is used to track the creation request 

and is used in any response from the knowledge store. The OBJECT COUNT field is provided to 

indicate how many objects are included in the message. Each object is constructed from set of 

fields including OBJECT ID, OBJECT ESTIMATOR TYPE, OBJECT TIME STAMP, OBJECT 
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GEOSPATIAL INFORMATION and OBJECT ATTRIBUTES. The OBJECT ID field is optional. It is 

provided when the client would like to create an object with a particular unique object ID. The 

OBJECT ESTIMATOR TYPE field is also optional. It indicates which of the available estimation 

algorithms available should be used to estimate the geospatial position of the object for queries 

about its future state. If this field is not present, it is assumed that the object is to be considered 

static by the knowledge store. The OBJECT TIME STAMP field is optional. This field is used to 

indicate the time at which the geospatial information about the object was measured or otherwise 

known to be valid. The OBJECT GEOSPATIAL INFORMATION is a collection of all the information 

needed to completely define the geospatial configuration of the object. Lastly, the OBJECT 

ATTRIBUTES INFORMATION is a list of attributes which are attached to the object. It is assumed 

that each attribute can also be declared as either static or dynamic with an appropriate estimator 

and timestamp. 

Confirm Creation Message 

 REQUEST ID 

 CREATION RESULT 

 OBJECT IDS 

 

The Confirm Creation message is sent by the knowledge store to the client following the 

receipt of a Create Object(s) message. This message includes the REQUEST ID of the original 

creation. The CREATION RESULT field is used to indicate the success or failure of the creation 

request. For each object in the original request, the appropriate OBJECT ID (either assigned by 

the knowledge store or as requested) is included.  

Modify Object(s) Message 

 REQUEST ID 

 OBJECT COUNT 
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 OBJECT ID 

 OBJECT ESTIMATOR TYPE (OPTIONAL) 

 OBJECT TIME STAMP (OPTIONAL) 

 OBJECT GEOSPATIAL INFORMATION 

 OBJECT ATTRIBUTES INFORMATION (OPTIONAL) 
 

The Modify Object message is used by the knowledge store client to modify or add 

information about an object in the knowledge store. The REQUEST ID is used by the knowledge 

store in its response to track the original request. The OBJECT COUNT field is used to indicate the 

number of objects included to be modified. The OBJECT ID field indicates which object in the 

knowledge store that the client would like changed or updated. Like the Create Object(s) 

message, this message includes information about the object which should be changed or 

updated. The client is given the opportunity to change the OBJECT ESTIMATOR TYPE, update the 

OBJECT TIME STAMP and update or replace the OBJECT GEOSPATIAL INFORMATION and OBJECT 

ATTRIBUTES INFORMATION. 

Confirm Modification Message 

 REQUEST ID 

 MODIFICATION RESULT 

 

The Confirm Modification message is sent by the knowledge store in response to a 

Modify Object message. This message includes two fields, the REQUEST ID of the original 

modification message and a result. The MODIFICATION RESULT is used to indicate success or 

failure of the request. 

Delete Object(s) Message 

 REQUEST ID 

 OBJECT IDS (OPTIONAL) 

 DELETION REGION (OPTIONAL) 

 DELETION ATTRIBUTES (OPTIONAL) 
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The Delete Object(s) message is sent to the knowledge store from a client who wishes to 

delete one or more objects from the knowledge store. The REQUEST ID is used to track the input 

for any response. There are 3 ways objects can be identified for deletion. The first is to identify 

the unique OBJECT ID of the object(s) to be deleted. The second method is to provide a 

DELETION REGION. Here the client provides a geometric region to the knowledge store; all 

objects within that region (either wholly or partly) will be deleted. The last method is to provide 

a list of DELETION ATTRIBUTES. This will cause the knowledge store to remove any object which 

matches all the attributes provided. These various methods can be combined to form more 

complex deletion requests. Such combinations result in logical conjunctions and could allow 

deletion of a particular object only if it is inside the deletion region or removal of all objects in a 

region that match a particular attribute value. Through combinations of the three methods, a large 

number of flexible deletion commands can be constructed. 

Confirm Deletion Message 

 REQUEST ID 

 DELETION RESULT 

 OBJECT IDS 

 

The Confirm Deletion message is sent by the knowledge store in response to a Delete 

Object(s) message. This includes the REQUEST ID field of the original deletion request for 

tracking purposes. The DELETION RESULT indicates success or failure of the request. The OBJECT 

IDS field is a list of the objects successfully removed from the knowledge store. 

Query Object(s) Message 

 REQUEST ID 

 HISTORY SIZE (OPTIONAL) 
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 OBJECT IDS (OPTIONAL) 

 QUERY REGION (OPTIONAL) 

 QUERY ATTRIBUTES (OPTIONAL) 

 

The Query Object(s) message is used by a client to find information about the current or 

past state of one or more objects in the knowledge store. The Request Id is used to track the 

query and identify the response from the knowledge store. The History Size field is optional. 

This field indicates the time period of object history to be included in the response. There are three 

ways objects can be identified for inclusion in the response. The first method is to explicitly 

identify the object(s) through the use of their OBJECT IDS. The second method consists of 

identifying a QUERY REGION. This defines a geometric region in which all objects within (either 

wholly or partly) will be included in the result. Lastly, specific QUERY ATTRIBUTES can be 

included. Any object which matches all the included attributes will be included in the result. Like 

the Delete Object(s) message, these fields can be combined to provide more flexible queries. 

Combinations are considered to be logical conjunctions. This allows queries such as a specific 

object if it is inside some region or all objects with a particular attribute value. 

Report Object(s) Message 

 REQUEST ID 

 QUERY RESULT 

 HISTORY SIZE (OPTIONAL) 

 OBJECT COUNT 

 OBJECT ID 

 OBJECT ESTIMATOR TYPE (OPTIONAL) 

 OBJECT TIME STAMP (OPTIONAL) 

 OBJECT GEOSPATIAL INFORMATION  

 OBJECT ATTRIBUTES INFORMATION 

 

The Report Object(s) message is sent by the knowledge store in response to a Query 

Object(s) message. This message contains the results, if any, of the presented query. The 
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REQUEST ID is used to identify to the client which query this is the response to. The QUERY 

RESULT field is used to indicate the success or failure of the original query. The HISTORY SIZE 

field is optional and is included if the original query included it. The OBJECT COUNT field 

indicates how many unique objects are included in the report. For each object included, the 

OBJECT ID, OBJECT ESTIMATOR TYPE, OBJECT TIME STAMP, OBJECT GEOSPATIAL 

INFORMATION and OBJECT ATTRIBUTES INFORMATION are included as appropriate. If a history of 

data is included, each of the OBJECT TIME STAMP, OBJECT GEOSPATIAL INFORMATION and 

OBJECT ATTRIBUTE INFORMATION will include a collection of values which constitute the history 

of object. 

Query Object(s) Future State Message 

 REQUEST ID 

 QUERY TIME 

 OBJECT COUNT 

 OBJECT ID 

 OBJECT ATTRIBUTES (OPTIONAL) 

 

The Query Object(s) Future State message is sent to the knowledge store by a client 

which is interested in the future state of some object(s). The REQUEST ID is used by the 

knowledge store to track the response. The QUERY TIME field is used to indicate the point in time 

at which the future state of the object is of interest. The OBJECT COUNT field indicates how many 

objects are included in the query. Each object queried includes the unique OBJECT ID and which 

OBJECT ATTRIBUTES (if any) are to be included in the response. 

Report Object(s) Future State Message 

 REQUEST ID 

 QUERY RESULT 

 OBJECT COUNT 

 OBJECT ID 
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 OBJECT TIME STAMP 

 OBJECT GEOSPATIAL INFORMATION ESTIMATE 

 OBJECT ATTRIBUTES INFORMATION ESTIMATE (OPTIONAL) 

 

The Report Object(s) Future State message is sent by the knowledge store in response to 

a Query Object(s) Future State message. The REQUEST ID field is used to indicate which 

originating query this response is for. The QUERY RESULT field indicates the success or failure of 

the query. OBJECT COUNT indicates how many objects are included in the report. Each object 

includes its unique OBJECT ID, the OBJECT TIME STAMP for the future state, the OBJECT 

GEOSPATIAL INFORMATION ESTIMATE and if requested, the OBJECT ATTRIBUTES INFORMATION 

ESTIMATE. 

Query Geospatial Bounds Message 

 REQUEST ID 

 OBJECT ATTRIBUTES INFORMATION (OPTIONAL) 

 

The Query Geospatial Bounds message is used by the knowledge store client to ask for 

the geometric bounds of the knowledge store. The REQUEST ID is used to identify the query and 

its response. The OBJECT ATTRIBUTES INFORMATION field is optional. This field can be used to 

specify one or more attributes to filter the results. This causes the knowledge store to return the 

bounding geometry of only the objects that match the given attributes. 

Report Geospatial Bounds Message 

 REQUEST ID 

 QUERY RESULT 

 BOUNDARY GEOSPATIAL INFORMATION 

 OBJECT ATTRIBUTES INFORMATION (OPTIONAL) 
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The Report Geospatial Bounds message is sent in response to a Query Geospatial 

Bounds message. This message includes four fields. The REQUEST ID field is used to identify 

which query this result is in response to. The QUERY RESULT indicates the success of failure of 

the input query. The BOUNDARY GEOSPATIAL INFORMATION defines the geometry of the 

knowledge store’s boundary based on the query. If the result has been filtered by some attributes, 

the OBJECT ATTRIBUTES INFORMATION is included in the response. 

Query Temporal Bounds Message 

 REQUEST ID 

 OBJECT ATTRIBUTES INFORMATION (OPTIONAL) 

 

The Query Temporal Bounds message is used by the knowledge store client to ask for 

the temporal bounds of the knowledge store. The REQUEST ID is used to identify the query and 

its response. The OBJECT ATTRIBUTES INFORMATION field is optional. This field can be used to 

specify one or more attributes to filter the results. This causes the knowledge store to return the 

upper and lower timestamp of the objects that only match the given attributes. 

Report Temporal Bounds Message 

 REQUEST ID 

 QUERY RESULT 

 TEMPORAL INFORMATION 

 OBJECT ATTRIBUTES INFORMATION (OPTIONAL) 

 

The Report Temporal Bounds message is sent in response to a Query Temporal Bounds 

message. This message includes four fields. The REQUEST ID field is used to identify which 

query this result is in response to. The QUERY RESULT indicates the success of failure of the input 

query. The TEMPORAL INFORMATION defines the upper and lower time stamp of the knowledge 
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store’s boundary based on the query. If the result has been filtered by some attributes, the OBJECT 

ATTRIBUTES INFORMATION is included in the response. 

The Statistics-Based N
th

 Order Polynomial Predictor 

The methods by which the future state of a value can be estimated, or predicted, are 

multitude. Many of the more popular methods are covered within the literature review provided 

in Chapter Two. As discussed there, many of those methods, including Kalman Filters and most 

Neural Networks, incorporate a model of the object to aid in the prediction of the algorithm. For 

the author’s work, it was desired to find an algorithm that was generic enough to be applied to a 

very large variety of data without a priori knowledge of the system model. 

To that end, the author has devised a unique algorithm called the Statistics-Based Nth Order 

Polynomial Predictor (SNOPP). SNOPP is a novel combination of real-time data analysis and 

statistics to generate a polynomial which can be used to estimate the future state of any 

continuous time-variant data. That is, for a small change in time, the change in the output is 

small. Systems exhibiting discontinuous behavior can be modeled, however large errors may be 

observed around any discontinuous point. 

SNOPP works to find a polynomial which best fits the trend of a given data set. Stated 

formally, the data set is the matrix D which has size n × 2: 

 

 (3.1)  

The algorithm works by analyzing a given data set repetitively, attempting to fit a 

polynomial to the data at a series of different orders (1st, 2nd … n
th). It also varies the length, or 

history, of information. By varying the history size, SNOPP can achieve stable results for long 

data trends, yet quickly react to changes in the data set. Three parameters govern the solution 
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space of the algorithm, a maximum order value, the window size and window count. The 

maximum order value is an upper limit on the order to which the algorithm will attempt to fit a 

polynomial. Window size is the number of data points which will be analyzed per solution 

iteration. Window count is the number of data windows to solve, which is the number of 

solutions to iterate through. Figure 3-2 shows the relationship between the window size and 

window count parameters for some hypothetical data set. The window size parameter should 

always be set equal to or greater than the maximum order value in ensure convergence of the 

solution of the polynomial. Once the three parameters are set, the algorithm continues as follows.  

SNOPP independently analyzes subsets of the original data set which are defined by the 

window size and window count. For each subset, it seeks to find the best fit polynomial of up to 

the maximum order. First, a polynomial of the highest possible order (let k = maximum order) is 

fit to the data using the least-squares fit method. This polynomial is defined as, 

  (3.2)  

The least-squares method is based upon minimizing the sum of the residuals at each data 

point. The residual equation is given as, 

 
 (3.3)  

The solution then, is to minimize  with respect to each , 

 
 (3.4)  

The polynomial can also be described in matrix form as, 

  (3.5)  
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where:          and  

 

In this form the solution for  can be found by premultiplying by  as,  

  (3.6)  

which can be solved numerically or inverted directly if  is well-formed, resulting in: 

  (3.7)  

This yields a k-order polynomial that is the best fit to the given data sub-set. However, it is 

plausible that one or more of the order terms are not statistically significant. That is, while the 

algorithm may have attempted to fit a 5th-order polynomial and found said solution, the best fit to 

the data may actually be a 2nd-order polynomial. SNOPP uses a Type I Sum of Squares statistical 

test to determine exactly what order polynomial best approximates the given data. The Type I 

Sum of Squares evaluates the difference between a polynomial and its lower-order equivalent for 

each polynomial up to the maximum order. For each test, the null hypothesis is that  

while the alternative hypothesis is  This test is done using the following as the F 

Value: 

 
 

 
(3.8)  

Here MSE is the Mean Squared Error of the original k-order polynomial and is found by 

 
 

where is the mean of the dataset. 
 

(3.9)  

(SSModel)i is defined as the Sum of Squares of the model or residuals and is calculated as 
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where  

(3.10)  

 

It is important to note here that  is the value obtained from a least squares fit of a polynomial 

of i-order. That is to say a polynomial must be fit to the original dataset for every order 1 to k.  

Using equation (3.8) a value for Fi can be found. This value is evaluated against the 

standard F-Distribution, which is a one-tailed continuous distribution. The F-Distribution is 

evaluated with two degrees of freedom. The first degree of freedom is equal to 1 because this test 

is always evaluating an equation with one more term of variance than the former, . The 

second degree of freedom is equal to the degree of freedom of the MSE value, or 

 The alternative hypothesis  is rejected if the probability of it being untrue is 

above some critical value. Typically a very large probability is applied to this test such as 20%. 

If the test reveals that a particular  has a high probability of being equal to zero, then that term 

and all higher-level terms are considered zero. 

This yields a value for exactly what order polynomial best fits the given data set (let p 

equal this order). This yields a polynomial of order p for the given window size. SNOPP then 

repeats this polynomial fit and analysis a total of window count times. Each time, the data set 

grows by window size data points. This provides a number possible polynomials, each 

statistically determined to be the best fit for their given data set. The algorithm then selects the 

polynomial which has the lowest order solution. In case of a tie, the solution with the largest data 

set is used. 

The lowest order polynomial is chosen because higher-order polynomials tend to fit data 

well within the dataset, but diverge when used for extrapolation, which is the goal of the 
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future state estimator. The data set with the largest history is used because with larger data sets 

provide more statistical significance and a more stable trend for data extrapolation. By 

combining small window size with a large number of window counts, long, stable trends in the 

data can be accommodated, but changes in that trend can be quickly detected and adjusted to by 

the smaller datasets which represent the most recent history of the data. 

A numeric example of the SNOPP algorithm is included in Appendix C of this dissertation 

for clarity. 
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Confirm Creation

Report Object(s)

Report Object Future

Report Geospatial Bounds

Report Temporal Bounds

Spatiotemporal World Model 
Knowledge Store

Create Object(s)

Modify Object(s)

Query Object(s)

Query Object Future

Query Geospatial 
Bounds

Query Temporal Bounds

Delete Object(s)

Confirm Modification

Confirm Deletion

Assign Object Id BlockRequest Object Id Block

 
Figure 3-1 Overview of the input and output messages associated with the Spatiotemporal World 

Model Architecture. 
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Figure 3-2 Window Size and Window Count are two governing parameters for the Statitics-

Based Nth Order Polynomial Predictor. Here the relationship between the dataset, 
Window Size and Window Count is shown. 
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CHAPTER 4 
IMPLEMENTATION DETAILS 

In this chapter, the author outlines the technical details of a reference implementation of 

the architecture and prediction algorithm presented in the previous chapter. Many technical 

challenges existed in implementing the theoretical Spatiotemporal World Model and the 

Statistics Based Nth-Order Polynomial Predictor. Discussion of those challenges and the way 

each was overcome is detailed herein. The JAUS World Model Vector Knowledge Store 

Message Set section discusses the details of the JAUS messages implemented to embed the 

theoretical architecture into the research environment available. The Database Selection and 

Design section discusses the geospatial database selected for use in this implementation. The 

design of the database’s tables allows for easy and flexible implement a variety of prediction 

techniques, a Generic Predictor interface was designed and is described in the section titled the 

same. The Polynomial Predictor section outlines the details of the reference implementation of 

the SNOPP algorithm. Lastly, the World Model Vector Knowledge Store section details how the 

various pieces were brought together into a single JAUS component. 
JAUS World Model Vector Knowledge Store Message Set 

The Center for Intelligent Machines and Robotics (CIMAR) has been involved in the 

activities of the Joint Architecture for Unmanned Systems (JAUS) Working Group for several 

years through sponsored work with the Air Force Research Lab (AFRL) at Tyndall Air Force 

Base. As such, the bulk of the research work done at CIMAR focuses on the usability and 

extension of JAUS to solve a large variety of ever-increasingly complex robotic system 

problems. As discussed in Chapter 2, recent work within the JAUS Working Group has focused 

on the area of world modeling. However, the work done prior to the author’s research was 

primarily focused on the query and storage of static geospatial data objects. Therefore the 
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research presented herein was focused on extending the existing World Model Vector 

Knowledge Store (WMVKS) component to support the generic Spatiotemporal World Model 

Architecture defined in the previous chapter. 

This approach provided a number of key advantages. First, a vast and reliable collection 

of software which was developed at CIMAR to aid in the development and deployment of 

JAUS components. Second, the ability to quickly insert the author’s experimental component 

into an existing JAUS robotic platform for field testing and evaluation. Finally, a wealth of 

knowledge about the JAUS architecture and its capabilities allowed the author to focus more on 

application details and less on basic infrastructure of the system. 
The JAUS WMVKS message set is based upon three primary entities; the object geometry, 

feature classes and feature class attributes. The object geometry can be one of a point, line or 

polygon along with the associated global coordinates of each vertex of the geometry. The current 

WMVKS message set only supports the global latitude and longitude coordinate system based on 

the WGS84 ellipsoid. This is the primary global coordinate system defined for use in JAUS. 

Associated with each object is also one or more feature classes. Feature classes are used to 

categorize the geometries. Examples of feature classes may include roads, terrain, occupancy, 

trees, etc. The feature classes can be closely associated with different layers of information in 

typical geospatial information (GIS) system. Associated with each feature class is a single 

feature class attribute. A feature class attribute can be of several different types (byte, integer, 

float, RGB, etc). These attributes provide more detailed data about the feature class they 

describe. For example, an object may have the “Velocity_Meters_Per_Second” feature class 

associated with it, and its attribute value may be “11.2.” This value would indicate the velocity 

of the object it is attached to. In the reference implementation, both objects and their feature class 
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attributes can be considered dynamic by the WMVKS. The message set supports the ability to 

designate separate estimation algorithms for each object and each feature class attribute. This 

allows a large variety of objects and feature classes to be handled by the component. 

In order to successfully deploy the WMVKS as a Spatiotemporal World Model, the 

existing WMVKS message set had to be modified and extended to support a large variety of new 

data. Table 4-1 lists the various messages and implemented in the WMVKS component 

developed for this research. Messages which did not exist in the original WMVKS message set 

and have been added for this research are indicated in the appropriate column. The message set 

definition is included as Appendix A. 

Some key messages and their content were developed specifically to support the author’s 

work. These include the Query Vector Knowledge Store Objects Future State, Report Vector 

Knowledge Store Objects Future State, and Modify Vector Knowledge Store Objects messages. 

The original WMVKS message set did not provide an interface to allow a client to change or 

modify an object’s state after insertion. The new modify message addresses this need. The 

original WMVKS message set also did not address the ability to query about time-variant data. 

To that end, the query and report future state messages were developed. These messages extend 

the functionality of the original knowledge store, adding the ability to reason about the future of 

an object or its attributes. 

Database Selection and Design 

A significant challenge of world modeling task was to implement some methodology to 

store the knowledge store’s objects and attributes. As discussed in Chapter 2, Spatial Databases 

are relational or object-relational database management systems (DBMS) which specialize in the 

handling of spatial data. The DBMS approach was chosen for the author’s work because it 

provided a number of advantages such as 
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 persistent storage capabilities, 
 high-level (e.g. SQL) interface languages, 
 availability of robust and complete spatial query capabilities,  
 support of temporal data types and queries, and 
 portability of code between projects. 

 
A constraint of the development environment at CIMAR is that all the robotic systems run 

on some version of the Linux operating system. This is due to a number of factors which are 

themselves outside the scope of this discussion. However, in the selection of a candidate spatial 

database technology, it was a requirement for the purposes of this work. The author was also 

interested in attempting to accomplish the goals of the work through the use of an open-source 

implementation. While various DBMS technologies are available cheaply or for free to 

educational institutions, a majority of the author’s work was destined for use by AFRL, where 

the DBMS of choice could cost significantly more. See Table 2-1 for more details about various 

Spatial DBMS technologies. 

PostgreSQL is an open source object-relational DBMS. PostGIS is a collection of data 

types and functions which “spatially extend” PostgreSQL to allow the database to function as a 

spatial knowledge store. PostGIS is also available open source. A companion software library, 

Geometry Engine Open Source (GEOS) [48], is a C/C++ API which implements the OpenGIS 

Consortium’s Simple Features Specification for SQL [29]. This is important because the bulk of 

the work done at CIMAR is done in the C/C++ programming languages. PostgreSQL, PostGIS 

and the GEOS library provide the core geospatial capabilities of the implementation. 

PostgreSQL also supports data types for temporal data. This allows support for the storage and 

querying of time stamps in the database, providing the necessary temporal capabilities for the 

implementation. 
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The design of a database schema was also required. The goal was to easily and efficiently 

store a large variety of objects within the database which could be quickly and easily queried. 

Two tables were created to store the objects and their related feature classes. Figure 4-1 shows 

the Entity-Relationship Diagram for the database design and the various field names for each 

table.  

The Objects table consists of 9 fields: object_id, object_type, buffer_meters, 

object_timestamp, utm_init_longitude, estimator_type, estimator_solution, vector_object, and 

geometry.  Table 4-2 lists these fields, their PostgreSQL data type and a brief description of 

each. The FeatureClass table consists of 7 fields: object_id, fc_id, fc_estimator_type, 

fc_estimator_solution, fc_data_type, attribute and attribute_timestamp. Table 4-3 lists these 

fields, their PostgreSQL data types and a brief description of each. To ease in the use of these 

two tables, a unique SQL VIEW is constructed in the database. This is constructed as a SQL 

JOIN of the two tables with the following statement: 

CREATE VIEW snapshot AS  

SELECT * FROM objects JOIN featureclasses  

   USING (object_id); 

This allows quick and easy access to the combination of data from the two tables and is used 

extensively in the various query responses. 

Generic Predictor Interface 

One key element to the overall Spatiotemporal World Model Knowledge Store 

Architecture is the ability to easily deploy a variety of prediction algorithms. It was important 

that the reference implementation address this in a flexible and robust manner. To that end, the 

Generic Predictor Interface was developed. The Generic Predictor provides a common set of 

functionality that all predictors must implement. The methods supplied by the interface include 

solver, estimator, toBuffer and fromBuffer. The interface also provides common storage for the 
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data set that the prediction algorithm is concerned with. It also provides a storage container for 

any specific parameters that a specific predictor needs. One common configuration parameter is 

included in the interface. This is a value for the minimum number of data points the predictor can 

solve for. This is important because some prediction algorithms are unable to find a solution if 

less than the minimum number of data points are provided. (e.g. a linear solution is not viable 

given a single data point) 

The solver method is used to generically involve a specific algorithm’s unique solution. 

The estimator method similarly provides a common method of retrieving the value of a given 

predictor for a given data point. Last, the toBuffer and fromBuffer methods provide a 

mechanism by which a specific predictor can pack its critical data into and from a byte buffer. 

This is used in conjunction with the estimator solution fields in the database to provide fast, 

efficient access to the predictor’s solution for future state queries. Three different prediction 

techniques were implemented to support the author’s work: a static predictor, a linear predictor 

and a polynomial predictor. The implementation details of the polynomial predictor are covered 

in the next section. Details of the static and linear predictors are covered in the Dynamic World 

Model Vector Knowledge Store section later in this chapter. Excerpts of the Generic Predictor 

code are provided in Appendix B. 

Polynomial Predictor Implementation 

The Polynomial Predictor is an implementation of the Statistics-Based Nth Order 

Polynomial Predictor (SNOPP) described theoretically in Chapter 3. One key feature of the 

polynomial predictor is the incorporation of a number of configuration parameters that control its 

behavior. These configuration parameters are listed in Table 4-4. The Window Count and 

Window Size parameters align with the ones outlined in the discussion of SNOPP in the previous 

chapter. The Minimum and Maximum Order values provide limits on the solution provided by 
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the predictor. The P-Critical Value parameter is used to control which level of confidence is 

imposed on the alternative hypothesis test. The Minimum Point Count parameter is inherited 

from the Generic Predictor and indicates the minimum number of points needed to evaluate the 

predictor. This is usually driven by some combination of Window Size and/or Maximum Order. 

The predictor makes use of the GNU Science Library (GSL) [49] for its multivariable 

least-squares fit functions. The gsl_multifit_linear() method fits a function of the form 

. The  vector is formed from the collection of values from the object or attribute being 

predicted. Each row of the   matrix is the corresponding timestamp value, raised to the powers 

0 through k. This casts the multivariable least-squares regression in the form of a kth order 

polynomial, i.e. .  

This predictor also makes use of GSL to evaluate the F-Value obtained from equation 

(3.8). To evaluate this, the cumulative distribution value Q(x) is found using the 

gsl_cdf_fdist_Q() function. This value is evaluated against the P-Critical Value provided to 

analyze the alternative hypothesis outlined in Chapter 3. This yields the statistically significant 

order solution (p). For each window (defined by Window Count) the Polynomial Predictor 

compares the output solution for . As outlined in Chapter 3, the solution with the lowest order 

and greatest window size is chosen.  

To aid in the ease of use by the WMVKS, the Polynomial Predictor implements the 

Generic Predictor Interface discussed previously. To do so it must provide functions for the 

solver, estimator, toBuffer and fromBuffer methods. The solver and estimator functions are 

straight-forward and either solve for the prediction equation, or estimate using that solution. The 

toBuffer method packs a collection of solution-critical values into a byte buffer. These include 
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the solution’s order and the  vector. The fromBuffer method does the inverse operation. This 

provides a quick and flexible way to store the vital information for future state queries.  

Dynamic World Model Vector Knowledge Store 

The purpose of this chapter, thus far, has been to outline the building blocks that make up 

the World Model Vector Knowledge Store (WMVKS) that was implemented to support the 

author’s work. Figure 4-2 shows an outline of the WMVKS as implemented. The WMVKS was 

implemented as a JAUS Component based on a common component template developed at 

CIMAR for previous JAUS work. This allowed the author to focus efforts on the implementation 

of the WMVKS behavior and not the overall JAUS architectural requirements. Each message 

outlined in Table 4-1 needed to be implemented to be used by the WMVKS. The code to 

implement the various messages is also based on a flexible skeleton created previously at 

CIMAR for JAUS messages. 

The WMVKS is an event-driven component. That is, it only has to process data as requests 

and queries are received and has no observed periodic behavior (outside the normal JAUS 

periodic behavior which is a 1 Hz Report Heartbeat Pulse message). Therefore, its state machine 

is rather simple. JAUS defines several valid states of a given component. However, the WMVKS 

typically transitions straight to READY unless some error or fault is detected. When a message is 

received, the component does whatever work is necessary to process and answer that request. 

As discussed previously, a key feature of the overall Dynamic World Model Knowledge 

Store architecture is the ability to deploy different prediction algorithms. To support the author’s 

work, three unique prediction algorithms were implemented; a static predictor, a linear predictor 

and the polynomial predictor discussed previously. Each predictor implements the Generic 

Predictor interface to allow ease of use by the WMVKS. The static predictor is the most simple. 
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It is used as the prediction algorithm for any static object or attribute and is included for 

completeness in the design. It stores the latest value from the dataset as the solution and returns 

this as the estimated value for any point in time. The linear predictor implements a simple least-

squares linear fit to a set of data. For the implementation used, up to ten data points are used to 

fit the data. The linear fit predictor stores its result in a similar manor to the polynomial predictor 

through the use of the toBuffer and fromBuffer methods of the Generic Predictor interface. The 

least-squares approximation is done using the gsl_fit_linear() method from the GSL 

library. 

The static and linear prediction algorithms were implemented to provide robust solution 

future state queries. While the polynomial predictor was the primary prediction method 

developed and tested for this dissertation, it was realized that no valid solution would exist for 

data sets prior to the minimum point count defined in the polynomial predictor. Rather than 

handle this as a special case in that predictor, the author made use of the flexible predictor 

capabilities to implement lower count prediction techniques. Therefore, when a data set is made 

up of a single value, the static predictor is automatically invoked, regardless of the estimation 

type identified (the original estimation type value is preserved and left unmodified in the 

database record). If more than a single data point is present, but less than the specified 

predictor’s minimum point count, the linear predictor is used. This not only allowed a more 

robust solution to state prediction, it also increased the capability of the WMVKS by providing 

three prediction algorithms instead of just the one.  

One of the more complex messages handled by the WMVKS is the Create Vector 

Knowledge Store Object(s) message. This message may contain one or more objects with 

various attributes which must be handled by the WMVKS and added to its current collection of 
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objects. The code for this procedure is included as part of Appendix B. The following is a step-

by-step explanation of this process: 

1. The received Create Vector Knowledge Store Object(s) message is “unpacked” from the 

byte buffer into its specific data structure. 
2. For each object, the object ID bit is checked to see if it has been included, if not, the next 

valid value is queried from the database. 
3. Each object is translated from its data structure into an SQL INSERT statement for 

storage into the Objects table of the database: 
INSERT INTO objects(<table fields>)  

VALUES (<message data>); 

4. Each feature class included with an object is similarly converted into an SQL INSERT 
statement for insertion into the FeatureClass table of the database. 

INSERT INTO featureclass(<table fields>)  

VALUES (<message data>); 

5. If the confirmation has been requested, a Report Vector Knowledge Store Objects 
Creation message is sent back to the originating client with a list of the object IDs which 
have been stored. 

 
Similar to the create message, the Modify Vector Knowledge Store Object message 

invokes a complex process in the WMVKS. This process involves the various prediction 

algorithms; invoking them to provide solutions for future state estimation. Each time an object is 

modified, new information is included in the state history. This allows a new, updated solution to 

be found for future state estimation. The more often an object’s state is updated, the more 

quickly the various predictors may be able react to changes in the observed behavior and account 

for it in the future state estimator. Using the prediction methods implemented for the author’s 

work, prediction of an object’s position is limited to estimating the centroid of the object. This 

means the bounds of a polygon or line are considered static for the author’s work. This 

assumption may not always be true. Since the prediction algorithms implemented in the 

WMVKS are only concerned with the state of a single time-varying dataset, the estimation of 

future geospatial position is broken down into two datasets (Easting vs. Time and Northing vs. 

Time). The position solution is then the combination of two separate prediction solutions. 

Position estimation is done in the Universal Transverse Mercator (UTM) coordinate system 
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rather than the Latitude, Longitude and Altitude (LLA) coordinate system so that Euclidean 

Geometry can be applied. Projection between coordinate systems is provided by a UTM library 

that is part of CIMAR’s core library set. 

The code to handle receipt of a Modify Vector Knowledge Store Objects message is also 

included in Appendix B, but a step-by-step account is provided here for clarity: 

1. The received Modify Vector Knowledge Store Objects message is “unpacked” from the 

byte buffer into its specific data structure. 
2. The object ID included in the received message is checked against the database. If the 

target object does not exist, an error may be reported. 
3. The vector_object data field is retrieved from the database through the use of a SQL 

SELECT statement and used to create a copy of the database object in memory:  
SELECT vector_object FROM objects  

WHERE object_id = <message_object_id>; 
4. The information contained in the modify message is compared to the information 

retrieved from the database. Certain fields (such as buffer_meters) are replaced if 
modified. Modification of values in the database is done using a SQL UPDATE 
statement: 

UPDATE objects SET buffer_meters = <value>  

WHERE object_id = <message_object_id>; 
5. In the case of a dynamic object or attribute, the WMVKS adds the included information 

to the existing object or attribute history, as appropriate. If the value being modified is 
considered static, the modification message is used to replace the current value with the 
modified one. 

6. The modified and/or updated version of the vector_object information is generated and 
updated in the appropriate field of the database. 

7. Since object information has changed, the prediction solution must be updated. For each 
feature class, the appropriate predictor (static, linear or polynomial) is called and the 
solution is stored in the fc_estimator_solution field of the FeatureClass table. For every 
object, the estimator_solution is populated with the prediction solution for both the 
Easting (X) and Northing (Y) values. 

8. If the confirmation bit has been requested, the WMVKS responds to the originating client 
with a Report Vector Knowledge Store Object Modification message. 

 
The create and modify messages provide the primary methodology for a data provider 

(such as a sensor) to insert or change data within the WMVKS. However, other clients may be 

primarily interested in the consumption of that information. Clients interested only in the current 

state of an object or some attribute can use the Query Vector Knowledge Store Object(s) 

message. This message retrieves the object from the database through a SQL SELECT statement. 
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This query message is flexible in the way it can be constructed, from boundary queries to 

specific objects and/or attributes 

The other approach that can be employed is to query the future state of an object or 

attribute. This is done through the use of the Query Vector Knowledge Store Object(s) Future 

State message. This message can be used in two ways, designated by the query type field. In the 

first, called Absolute Query, the timestamp provided is considered an absolute time in the 

future at which to query the state of an object and its attributes. The other, Relative Query, is 

used to specify some time offset which will be added to the current time at which the WMVKS 

receives the message. This feature was added to the message to ease the use of registered 

periodic events (called Service Connections in JAUS, this mechanic is outside the scope of the 

author’s discussion [1]). In either case, the query time is used by the appropriate predictor to 

generate an estimate for the future value of the object and its attributes. The code for handling a 

Query Vector Knowledge Store Object(s) Future State message is also included in Appendix B. 

An outline of this code is provided below: 

1. The received Query Vector Knowledge Store Object(s) Future State message is 
“unpacked” from the byte buffer into its own data structure. 

2. For each object specified in the query, the database is checked to ensure an object with 
that id value exists. 

3. For each object queried, the query time value is setup, either using the absolute or relative 
time method. Note, this means multiple future state queries can be setup with different 
query times. The advantage of this is the ability to construct a query for the future state of 
a single object at multiple query times or offsets using a single message. 

4. For each object queried, the appropriate object predictor solution (in byte buffer format) 
is read from the database using an SQL SELECT statement: 

SELECT estimator_solution FROM objects  

WHERE object_id = <message_object_id>; 
5. This object predictor solution is unpacked appropriately (into both an X and Y predictor) 

and then used to estimate the position of the object at the given query time using the 
estimate function. 

6. For each object queried, the appropriately queried attributes are also estimated. To do so, 
the attribute estimator solutions are first retrieved from the database using a SQL 
SELECT statement. They are then converted using the predictor’s fromBuffer method. 
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Lastly, state estimates are conducted using the appropriate query time and estimator 
method. 

7. The object’s position estimation and any appropriate attribute estimations are then 

returned to the querying client via a Report Vector Knowledge Store Object(s) Future 
State message. 

 
The WMVKS component provides a robust implementation of the Spatiotemporal World 

Model architecture outlined in Chapter 3. It does so by combining the capabilities of the JAUS 

World Model Vector Knowledge Store message set, the advantages of the PostgreSQL database, 

and the capabilities of an array of unique prediction techniques. The techniques and approach 

outlined above provide a unique solution to the problem of storing and querying the future state 

of a dynamic object or attribute within the JAUS architecture. Many of the same techniques 

could easily be applied to any other robotics architecture, provided the messaging interface could 

be modified to support the message interface introduced in Chapter 3.  
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Table 4-1 JAUS WMVKS Message Set as implemented in the reference World Model Vector 
Knowledge Store component developed to support the author’s research. Both new 

and extended JAUS messages are listed. 

Message Name 

JAUS 

Command 

Code 

New 

Message 

Input / 

Output 

Message 

Request Vector Knowledge Store Object Id Block F120h ● Input 

Assign Vector Knowledge Store Object Id Block F320h ● Output 

Create Vector Knowledge Store Objects F121h  Input 

Report Vector Knowledge Store Objects Creation F321h  Output 

Modify Vector Knowledge Store Objects F122h ● Input 

Report Vector Knowledge Store Object Modification F322h ● Output 

Delete Vector Knowledge Store Objects F123h  Input 

Report Vector Knowledge Store Objects Deletion F323h ● Output 

Query Vector Knowledge Store Objects F130h  Input 

Report Vector Knowledge Store Objects F330h  Output 

Query Vector Knowledge Store Geospatial Bounds F132h  Input 

Report Vector Knowledge Store Geospatial Bounds F332h  Output 

Query Vector Knowledge Store Temporal Bounds F133h ● Input 

Report Vector Knowledge Store Temporal Bounds F333h ● Output 

Query Vector Knowledge Store Objects Future State F134h ● Input 

Report Vector Knowledge Store Objects Future State F334h ● Output 
 
Table 4-2 Object table data fields, PostgreSQL type and description. 
Field Name PostgreSQL Type Description 

object_id INT4  
PRIMARY KEY Unique object id value assigned to each object. 

object_type INT2 Value of the JAUS WMVKS object type  
(i.e. point, line or polygon). 

buffer_meters FLOAT Size of an optional buffer around the object’s 

geometry. 

object_timestamp TIMESTAMP Last time stamp value associated with the object 
geometry. Used for temporal queries. 

utm_init_longitude DOUBLE Value, in radians, of the longitude of the first point 
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PRECISION associated with this object. This is provided to 
ensure proper projection between LLA and UTM 
for an object. 

estimator_type INT2 Value of the estimator type associated with this 
geometry. 

estimator_solution BYTEA 
Hex string of the binary array of the estimator 
solution. Used to quickly provide solutions to 
future state queries. 

vector_object BYTEA Hex string of the binary array of the JAUS Vector 
Object structure. 

Geometry GEOMETRY 
PostGIS geometry column used to store the latest 
geometry value of the object. Used for geospatial 
queries. 

 
Table 4-3 Feature Class table data fields, PostgreSQL types, and description. 
Field Name PostgreSQL Type Description 

object_id INT4  
PRIMARY KEY Unique object id value assigned to each object. 

fc_id INT4 
PRIMARY KEY 

Feature Class id value, non-unique. However, 
there can only be one fc_id value per object_id 
value. 

fc_estimator_type INT2 Value of the estimator type associated with this 
geometry. 

fc_estimator_solution BYTEA 
Hex string of the binary array of the estimator 
solution. Used to quickly provide solutions to 
future state queries. 

fc_data_type INT2 Value of the enumerated data type of this feature 
class’ attribute. 

Attribute INT8 Feature Class Attribute value, stored as an 8-byte 
integer. 

attribute_timestamp TIMESTAMP Last time stamp value associated with the object 
geometry. Used for temporal queries. 

 
Table 4-4 Polynomial Predictor configuration parameters 
Parameter Name Description 

Minimum Point Count 
The minimum number of data points for which the predictor can 
successfully be used. This is usually dependent on the Minimum / 
Maximum Order parameters and/or the Window Size parameter. 
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Minimum Order This is the minimum order polynomial the predictor will analyze for 
a solution. Usually 0 or 1. 

Maximum Order 

This is the maximum order polynomial the predictor will analyze for 
a solution. Higher order polynomials can give better results in 
dynamic situations, and lower order ones are more stable in 
extrapolation. 

Window Size This is the size of each data window to analyze. 

Window Count This is the number of data windows, each Window Size larger than 
the previous, to analyze. 

P-Critical Value This value is used to evaluate the statistical significance of a 
particular order.  
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Figure 4-1 Entity-Relationship Diagram of WMVKS Database 
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Figure 4-2 World Model Vector Knowledge Store Implementation Diagram.
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CHAPTER 5 
TESTING AND RESULTS 

Previous chapters have dealt with the background and implementation details of the 

author’s dissertation. Herein, the testing methodology and results for a series of test are 

presented. To test the World Model Vector Knowledge Store (WMVKS) component a 

component capable of behaving as a source of dynamic information was required. The Laser 

Tracking Smart Sensor section covers a component developed to address this need. The Test 

Procedure and Plans chapter describes the various test scenarios devised and how each was 

conducted. Lastly, the Test Results section provides an overview of the results obtained by the 

author’s work. 

Laser Tracking Smart Sensor 

In order to properly test the WMVKS and its implementation, a source of dynamic 

information was needed. For the author’s work, a simple laser-based object tracking algorithm 

was implemented to collect real-world test data which could used to test the knowledge store. 

The Laser Tracking Smart Sensor (LTSS) was developed based on a combination of previous 

research activities at CIMAR. 

In the spring of 2003, a laser-based tracking algorithm was developed by the author and 

another researcher at CIMAR to support the “follow-the-leader” challenge at the Intelligent 

Ground Vehicle Competition (IGVC). This challenge was to follow at some fixed distance a 

human-driven lawn tractor. However, the algorithm has shown effectiveness at tracking and 

following a number of objects including other robots, humans and larger vehicles.  

The laser-tracking algorithm works by first receiving a user input which “seeds” the 

system and identifies the object to be tracked (Figure 5-1a). The system then searches for all 

neighboring points within some threshold distance to the object. Once all neighboring points are 



 

73 

identified, a bounding box around the collection is established (Figure 5-1b). On successive laser 

scans, the system uses an estimated bounding box to seed itself and repeat the threshold based 

search. The system is controlled to allow the collection of points to grow and shrink at some 

user-defined rate. 

The algorithm builds up a history of the tracked object’s position and uses them to estimate 

the velocity of the object. This velocity is in turn used to estimate the future position of the 

object at successive laser scans. Due to the fast (35-70Hz) rate at which laser scans occur, a 

linear velocity prediction has yielded adequate results. The LTSS algorithm has been shown to 

be incredibly capable at not only tracking a visible dynamic object, but estimating and 

reacquiring the object if it travels through the shadow of another object. Figure 5-2 shows the 

LTSS algorithm in action. The selected object is shown in orange while the current and future 

bounding boxes are shown in blue and green respectively. The estimated velocity vector is also 

shown. 

This algorithm successfully enabled the CIMAR entry to complete the “follow-the-leader” 

course in the first attempt at the 2003 IGVC competition. CIMAR’s entry (the TailGator) was the 

only vehicle to complete the course at the competition. Figure 5-3 shows the TailGator platform 

on the course following a human-driven lawn tractor. 

More recent work has been done by the author to integrate this laser algorithm into the 

JAUS system architecture onboard the NaviGATOR. For the DARPA Grand Challenge contest, 

CIMAR developed a common sensor architecture called Smart Sensors. The LTSS is based on 

this architecture which allows easy interfacing with the existing JAUS infrastructure onboard the 

NaviGATOR. More information about the Smart Sensor architecture can be found in [50]. 
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The IGVC laser algorithm was integrated into a smart sensor and interfaced to the planar 

laser mounted on the front of the NaviGATOR. Figure 5-4 shows the output of this Smart Sensor 

and provides a brief description. This setup was used track a truck driving in front of the 

NaviGATOR as a test location near the university. These tests provided a collection of data used 

to evaluate the performance of the WMVKS. Figure 5-5 shows the test setup with the 

NaviGATOR and the truck used as the tracked object. 

Test Procedure and Plans 

The LTSS data was used to test the WMVKS and its associated algorithms. For the 

author’s work, log files were generated by the LTSS which contained the tracked object’s 

position and a timestamp for each iteration of the LTSS. Also logged at the same time were the 

NaviGATOR’s position, velocity and heading values. This provided a variety of time-variant 

data which could be used to evaluate the performance of the WMVKS. Two test setups were 

devised. In the first test, the NaviGATOR was stationary while a moving object passed in front 

of it. This object was detected, then tracked by the LTSS and its position logged. Since the 

NaviGATOR is stationary for this test, it position, velocity and heading data is not used in the 

author’s work. In the second test (shown in Figure 5-5), the NaviGATOR is driven some 

distance behind a large truck in a looped course. The truck is detected and tracked throughout the 

loop. Once again the object’s position is logged, along with the NaviGATOR’s position, velocity 

and heading. Each test was performed five times. The log files were later taken and played-back 

in real time to the WMVKS and the results of the prediction algorithms recorded. To test the 

capabilities of the WMVKS, these log files were used to analyze five different test scenarios. 

Each scenario is described below along with a respective test plan. 
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Test Scenario 1: Tracked Object Using Polynomial Predictor from Stationary Platform 

In this scenario, the tracked object is moving while the NaviGATOR is stationary. It 

demonstrates basic behavior of the tracking algorithm and WMVKS performance. The 

polynomial predictor is used to estimate the future position of the tracked object one second, two 

seconds, three seconds, four seconds and five seconds in the future. Table 5-1 outlines the test 

plan; included therein is the test purpose, hypothesis, expected results, test design and logged 

data. 

Test Scenario 2: Tracked Object Using Polynomial Predictor from Moving Platform 

In this scenario, the tracked object is moving while the NaviGATOR is following it at 

some distance (both vehicles are human-driven for this test). This test demonstrates performance 

of the WMVKS for a common scenario, which is tracking objects moving around the vehicle 

while the vehicle itself is in motion. The polynomial predictor is used to estimate the future 

position of the tracked object one second, two seconds, three seconds, four seconds and five 

seconds in the future. Table 5-2 outlines the test plan; included therein is the test purpose, 

hypothesis, expected results, test design and logged data. 

Test Scenario 3: Tracked Object Using Linear Predictor from Moving Platform 

In this scenario, the tracked object is moving while the NaviGATOR is following it at 

some distance (both vehicles are human-driven for this test). This test is done in contrast to 

scenario two in using the same inputs but analyzing it using the linear predictor instead. The 

linear predictor is used to estimate the future position of the tracked object one second, two 

seconds, three seconds, four seconds and five seconds in the future. Table 5-3 outlines the test 

plan; included therein is the test purpose, hypothesis, expected results, test design and logged 

data. 
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Test Scenario 4: Velocity Attribute Using Polynomial Predictor 

In this scenario, the WMVKS is used to predict the future state of a feature class attribute 

rather than an object’s position. This shows the ability of the WMVKS to handle data that is not 

geospatial in nature. The data used in this test was collected from the NaviGATOR’s Velocity 

State Sensor (a standard JAUS component) during the test runs described previously. The 

polynomial predictor is used to estimate the velocity of the NaviGATOR one second, two 

seconds, three seconds, four seconds and five seconds in the future. Table 5-4 outlines the test 

plan; included therein is the test purpose, hypothesis, expected results, test design and logged 

data. 

Test Scenario 5: Heading Attribute Using Polynomial Predictor 

In this scenario, the WMVKS is used to predict the future state of a feature class attribute 

which represents the heading (or orientation) of some object. Data used for this test was collected 

from the Global Position Sensor component (a standard JAUS component) onboard the 

NaviGATOR. The polynomial predictor is used to estimate the state of the attribute one second, 

two seconds, three seconds, four seconds and five seconds in the future. Table 5-5 outlines the 

test plan; included therein is the test purpose, hypothesis, expected results, test design and logged 

data. 

Test Results 

In this section, the data collected for each test scenario will be analyzed and presented. 

Each test scenario was conducted five times. In this chapter, only one of each of these tests will 

be presented and discussed. Representative charts for each scenario are presented. 

Test Scenario 1 Results 

The purpose of this test scenario is to show the position estimation capabilities of the 

WMVKS as implemented by the author. As discussed in Chapter 4, to estimate the position of an 
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object, two polynomial predictors are employed, one for the easting (x) value and one for the 

northing (y) value. The position values are estimated in the Universal Transverse Mercator 

(UTM) coordinate system and converted into Latitude and Longitude prior to being sent to the 

LTSS. The test plan for this test is included as Table 5-1. 

Figure 5-6 show a typical plot of the easting vs. northing values used as source data for this 

series of tests. This chart shows that the tracked object moved primarily along the north/south 

axis with very little movement in the east/west direction. In figure 5-7 easting and northing 

values are plotted separately with respect to time. Figure 5-8 shows the easting vs. time plot with 

the one second, three second and five second prediction values. Figure 5-9 shows the northing 

vs. time plot with one second, three second and five second prediction values. Figure 5-10 shows 

the combined easting vs. northing plot with the predicted values. 

 Overall, test scenario 1 has demonstrated the ability of the WMVKS to handle dynamic 

position data, reason about the future state of that data and provide feedback to the LTSS. It has 

shown successful use of the polynomial predictor algorithm and the new JAUS world model 

message set implemented by the author. 

Test Scenario 2 Results 

The purpose of this test is to demonstrate the ability of the WMVKS to handle prediction 

of an object tracked by the LTSS over a much longer distance and time span. The test data 

covers over 3 minutes and 800 meters in length. Figure 5-11 shows a plot of easting vs. northing 

for a typical data set from this test. 

Figure 5-12 shows the same data plotted against time with easting on the left axis and 

northing on the right axis. Figure 5-13 provides a plot of just the easting value vs. time and the 

one second, three second and five second prediction values. Due to the scale of this plot, details 

are difficult to read. Therefore Figures 5-14, 5-15 and 5-16 provide closer views of the more 
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critical sections of the plot. Figure 5-17 shows the northing vs. time plot with corresponding 

prediction values. Again, Figures 5-18 and 5-19 are provided for clarity. 

Figures 5-20 and 5-21 show, graphically, the error in the 1 second predictor plotted on one 

axis with the actual and predicted values plotted on the other axis. These charts show that the 

polynomial predictor demonstrates large errors around changes in the data trend, but quickly 

reacquires the proper trend and provides good prediction results. 

The previous charts show graphically the error in the polynomial predictor. An analysis 

was conducted which calculated the error in the predicted value for all five trials of this scenario; 

the results of which are presented in Table 5-6. Here, the performance of the polynomial 

predictor can be shown to yield favorable results. The average error on the 1 second predictor is 

0.68 meters for the easting value and 0.60 meters for the northing values. Combined there is an 

overall 1.26 meter average error in the predicted position compared with the recorded true 

position 1 second in the future. The standard deviation value for the 1 second prediction was 

calculated to be 1.89 meters for the combined total of easting and northing. This means that if 

one assumes the error is normally distributed, 68% of the data falls within one standard deviation 

and 95% of the data is within two standard deviations (3.78 meters here) from the average value. 

Therefore for the 1 second predictor, 68% of the time, the error in the predicted value will be 

between -0.6 and 3.2 meters. 

Test Scenario 3 Results 

The purpose of this test is to show the ability of the WMVKS to apply a different 

prediction algorithm to the same set of input data. Using the same data set used in scenario 3, the 

position of the tracked object is estimated using the linear predictor. 

As the same initial data set is used in both scenario 2 and 3, figures 5-11 and 5-12 again 

illustrate the source data. Figure 5-22 provides a plot of the easting value vs. time including the 
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one second, three second and five second prediction values. Due to the scale of this plot, details 

are difficult to read. Therefore, figures 5-23, 5-24 and 5-25 provide closer views of more critical 

areas of the plot. Figure 5-26 provides a plot of the northing value vs. time including the one 

second, three second and five second prediction values. Again, figures 5-27 and 5-28 are 

provided for clarity. 

The plots shown in figures 5-20 through 5-24 demonstrate the prediction qualities of the 

linear prediction algorithm. Compared to figures 5-13 through 5-19, the linear predictor does not 

yield results as accurate as the polynomial predictor. The linear predictor does exhibit a  better 

response time to changes in trends, but has a much larger spread in the data at any given 

time. This is due to the rather small maximum point size used for this test (10). A 

smaller value provides quicker response to trend changes, but less stable results overall due to 

less data history in the estimator’s solution. 

Again, an analysis of the error was conducted and the results are presented in Table 5-7. 

Figure 5-29 shows the error values with respect to time plotted alongside the actual and predicted 

values for the 1 second prediction of the easting value. Figure 5-30 shows the same plot for the 

northing data. The values calculated in the error analysis demonstrate that the polynomial 

prediction method provides better overall results in this test scenario than the linear predictor. 

The linear predictor has a 1.55 meter error on average in the easting data (for a 1 second 

prediction) and a 0.89 meter error in the northing data. This yields a combined average error of 

2.44 meters for a 1 second prediction. This value is 1.2 meters more than the polynomial 

predictor for the same data set and prediction interval which is a 91% difference. 
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Test Scenario 4 Results 

The purpose of this test scenario is to demonstrate the WMVKS’ ability to handle dynamic 

feature class attributes and reason about the future state of those attributes. The velocity of the 

NaviGATOR over the course of a 3 minute drive is used as the sample data set. 

Figure 5-31 shows a plot of the velocity data vs. time which is typical of this test scenario. 

Figure 5-32 shows the same velocity vs. time plot combined with the predicted values one 

second, three seconds and five seconds in the future. Figure 5-33 shows a plot of the 1 second 

predictor’s results. Here the error vs. time is plotted alongside the actual and predicted values. A 

summary of the error results in included in Table 5-8. 

This test successfully demonstrates the ability of the WMVKS to predict the future state of 

dynamic feature class attributes. It also demonstrates the ability to make use of estimation 

techniques for a variety of data. Here the polynomial predictor is used as the prediction algorithm 

and yields favorable results with an average error of 0.38 meters per second for the 1 second 

predictor and a standard deviation of 0.34 meters. 

Test Scenario 5 Results 

This last test scenario is designed to demonstrate something that was mentioned in Chapter 

3 when the SNOPP algorithm was introduced. This prediction algorithm does not make use of 

any parameters which indicate the nature or model of the data being predicted. Therefore, it 

cannot adequately handle discontinuous data. Heading data exhibits this discontinuous behavior 

anytime it crosses the -π / π threshold. This test demonstrates the behavior of the polynomial 

prediction algorithm when such a discontinuity is encountered. Figure 5-34 shows a plot of the 

heading data vs. time. Figure 5-35 shows the same data and included the predicted values for one 

second, three seconds and five seconds in the future. Figure 5-36 shows the 1 second error plot 

for the same data set. Error analysis results are included in Table 5-9. 
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Before and after the discontinuity point (at approximately 133 Seconds) the polynomial 

predictor shows prediction capabilities similar to those observed for other dynamic data sets. 

However, one can observe that immediately after the discontinuity point the predictor’s solution 

is wildly incorrect. In actuality it predicts values well outside the range of -π to π which is 

considered valid for heading values. The effect of this can be seen in both Figure 5-36 (with error 

values approaching 12 radians) and Table 5-9 where the average heading error even 1 second in 

the future is 0.26 radians but the standard deviation is 0.92 radians. Much of the error and size of 

the standard deviation can be attributed to the large errors encountered around the discontinuity 

point. 

Testing Summary 

The test scenarios described in this chapter have highlighted the primary functionality of 

the WMVKS. The JAUS message set introduced in chapter 4 has been shown sufficient to 

support a large variety of data types and test scenarios. The ability to predict using different 

prediction algorithms has also been demonstrated in test scenario 3. Lastly, the polynomial 

predictor has been shown to be flexible enough to be used for a large variety of data in the 

prediction of future state. It has yielded favorable results in tracking not only objects, but also 

attributes as well. The linear prediction method was compared to the polynomial predictor and 

shown to yield less favorable results overall and in general provide much less stable behavior 

when used to predict future states. 
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ba  
Figure 5-1 Laser tracking algorithm. In (a) the orange dot is the seed point while the algorithm 

searches and identifies close neighbors in yellow. In (b) the search has been 
completed and the object to be tracked is surrounded by the inner bounding box. The 
outer bounding box is the estimated future position of the object which has been 
grown slightly. At first the object’s velocity vector is unknown so the future position 

and current position are coincident. 

 

 
Figure 5-2 Laser tracking algorithm. The tracked object is highlighted in orange. The current 

bounding box is shown in blue which the estimated future position of the object is 
shown in green. The estimated velocity vector is also shown. 
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Figure 5-3 The TailGator using the tracking algorithm to follow a lawn tractor. The TailGator 

was the only robot at the 2003 Intelligent Ground Vehicle Competition to 
successfully complete the course. 

 

 
Figure 5-4 Laser Tracking Smart Sensor output. Tracked object shown in green with a black 

bounding box. Red cells are another non-tracked object. Note the vehicle is located in 
the center of the grid and the vehicle heading is indicated by the small blue line 
(north-west here). 

 



 

84 

 
Figure 5-5 Laser Tracking Smart Sensor setup for collection of test data. The NaviGATOR 

(blue) is used to track the moving object (white truck) around a large test circuit. 

 
Table 5-1 Scenario 1 Test Plan 

Test Description 

In this test, an object detected by the LTSS will be inserted into the 
WMVKS. The object’s position will be updated by the LTSS while its 
future position will be estimated using the polynomial predictor. For 
this test, the object will be moving and the robotic platform will be 
stationary. 

Test Purpose 
To show the ability of the WMVKS to reason about and estimate the 
future geospatial position of an object using the polynomial predictor 
algorithm. 

Hypothesis The polynomial predictor will yield favorable tracking of the object’s 

future position. 

Expected Results 
The WMVKS will successfully handle a variety of create, modify and 
query messages to facilitate the creation and monitoring of an object 
and its future position. 

Test Design 

For this test, the NaviGATOR is stationary while a truck is driven in 
front of it. The LTSS identifies and tracks the truck as it moves across 
the sensor’s field of view. The position of the tracked object is updated 

in the WMVKS at 10 Hz. The future state of the object is queried at 5 
Hz. Each time, the position 1 second, 2 seconds, 3 seconds, 4 seconds 
and 5 seconds in the future is queried. 
 
The following configuration values are used in the polynomial 
predictor for this test: 
 
Minimum Point Count: 10 
Minimum Order: 0 
Maximum Order: 3 
Window Size: 5 
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Window Count: 20 
P-Critical Value: 0.2 (20%) 

Logged Data 
The estimated position of the tracked object at 1 second, 2 seconds, 3 
seconds, 4 seconds and 5 seconds in the future with appropriate 
timestamp for each report. 

 
Table 5-2 Scenario 2 Test Plan 

Test Description 

In this test, an object detected by the LTSS will be inserted into the 
WMVKS. The object’s position will be updated by the LTSS while its 

future position will be estimated using the polynomial predictor. For 
this test, both the object and the robotic platform will be moving. This 
test is much longer in length than test 1 and will show a larger variety 
in the data set. 

Test Purpose 
To show the ability of the WMVKS to reason about and estimate the 
future geospatial position of an object using the polynomial predictor 
algorithm. 

Hypothesis The polynomial predictor will yield favorable tracking of the object’s 

future position. 

Expected Results 
The WMVKS will successfully handle a variety of create, modify and 
query messages to facilitate the creation and monitoring of an object 
and its future position. 

Test Design 

For this test, the NaviGATOR is following a truck which driven in 
front of it. The LTSS identifies and tracks the truck as it moves. The 
position of the tracked object is updated in the WMVKS at 10 Hz. The 
future state of the object is queried at 5 Hz. Each time, the position 1 
second, 2 seconds, 3 seconds, 4 seconds and 5 seconds in the future is 
queried. 
 
The following configuration values are used in the polynomial 
predictor for this test: 
 
Minimum Point Count: 10 
Minimum Order: 0 
Maximum Order: 3 
Window Size: 5 
Window Count: 20 
P-Critical Value: 0.2 (20%) 

Logged Data 
The estimated position of the tracked object at 1 second, 2 seconds, 3 
seconds, 4 seconds and 5 seconds in the future with appropriate 
timestamp for each report. 
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Table 5-3 Scenario 3 Test Plan 

Test Description 

In this test, an object detected by the LTSS will be inserted into the 
WMVKS. The object’s position will be updated by the LTSS while its 

future position will be estimated using the linear predictor. For this test, 
both the object and the robotic platform will be moving. 

Test Purpose To contrast the difference in results obtained using the polynomial and 
linear predictors 

Hypothesis The linear predictor will show less optimal prediction capabilities, but 
more quickly adjust to trend changes. 

Expected Results 
The linear prediction algorithm will show less optimal prediction 
capabilities, but perform better than the polynomial predictor around 
trend changes. 

Test Design 

For this test, the NaviGATOR is following a truck which driven in 
front of it. The LTSS identifies and tracks the truck as it moves. The 
position of the tracked object is updated in the WMVKS at 10 Hz. The 
future state of the object is queried at 5 Hz. Each time, the position 1 
second, 2 seconds, 3 seconds, 4 seconds and 5 seconds in the future is 
queried. 
 
The following configuration values are used in the linear predictor for 
this test: 
 
Minimum Point Count: 2 
Maximum Point Count: 10 

Logged Data 
The estimated position of the tracked object at 1 second, 2 seconds, 3 
seconds, 4 seconds and 5 seconds in the future with appropriate 
timestamp for each report. 

 
Table 5-4 Scenario 4 Test Plan 

Test Description 

In this test, the velocity of the NaviGATOR as it drives some path will 
be attached to a point object as a dynamic feature class attribute. Its 
value will be updated and its future value will be predicted using the 
polynomial predictor. 

Test Purpose To show the ability of the WMVKS to reason about and estimate 
values for dynamic feature class attributes. 

Hypothesis The polynomial predictor will yield favorable tracking of the velocity 
value. 

Expected Results 
The WMVKS will successfully handle a variety of create, modify and 
query messages to facilitate the creation and monitoring of a feature 
class attribute and its future state. 
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Test Design 

For this test, the NaviGATOR’s velocity value is updated in the 

WMVKS at 10 Hz. The future state of the value is queried at 5 Hz. 
Each time, the position 1 second, 2 seconds, 3 seconds, 4 seconds and 5 
seconds in the future is queried. 
 
The following configuration values are used in the polynomial 
predictor for this test: 
 
Minimum Point Count: 10 
Minimum Order: 0 
Maximum Order: 3 
Window Size: 5 
Window Count: 20 
P-Critical Value: 0.2 (20%) 

Logged Data 
The estimated position of the tracked object at 1 second, 2 seconds, 3 
seconds, 4 seconds and 5 seconds in the future with appropriate 
timestamp for each report. 

 
Table 5-5 Scenario 5 Test Plan 

Test Description 

In this test, the heading of the NaviGATOR as it drives will be attached 
to a point object as a dynamic feature class attribute. Its value will be 
updated and its future state will be predicted using the polynomial 
predictor. 

Test Purpose To show the behavior of the polynomial predictor when estimating the 
value of a non-continuous signal. 

Hypothesis The polynomial predictor will exhibit poor tracking for discontinuous 
signals. 

Expected Results 
The polynomial predictor will reasonably predict the heading value 
between discontinuity points. However at the points of discontinuity 
the predictor will have very large errors. 

Test Design 

For this test, the NaviGATOR’s heading value is updated in the 

WMVKS at 10 Hz. The future state of the value is queried at 5 Hz. 
Each time, the position 1 second, 2 seconds, 3 seconds, 4 seconds and 5 
seconds in the future is queried. 
 
The following configuration values are used in the polynomial 
predictor for this test: 
 
Minimum Point Count: 10 
Minimum Order: 0 
Maximum Order: 3 
Window Size: 5 
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Window Count: 20 
P-Critical Value: 0.2 (20%) 

Logged Data 
The estimated position of the tracked object at 1 second, 2 seconds, 3 
seconds, 4 seconds and 5 seconds in the future with appropriate 
timestamp for each report. 

 
Table 5-6 Error analysis of test scenario 2 

  

Easting 
(meters) 

Northing 
(meters) 

Combined 
(meters) 

1 Second 
Average 0.676 0.600 1.276 
Standard Deviation (σ) 0.967 1.372 1.892 
2*σ 1.935 2.744 3.784 

2 Seconds 
Average 1.423 1.236 2.659 
Standard Deviation (σ) 2.071 2.740 4.011 
2*σ 4.141 5.480 8.022 

3 Seconds 
Average 2.479 2.102 4.581 
Standard Deviation (σ) 3.682 4.556 6.924 
2*σ 7.365 9.111 13.849 

4 Seconds 
Average 3.856 3.171 7.027 
Standard Deviation (σ) 5.834 6.761 10.561 
2*σ 11.668 13.523 21.122 

5 Seconds 
Average 5.516 4.454 9.971 
Standard Deviation (σ) 8.495 9.351 14.890 
2*σ 16.989 18.702 29.781 

 
Table 5-7 Error analysis of test scenario 3 

  

Easting 
(meters) 

Northing 
(meters) 

Combined 
(meters) 

1 Second 
Average 1.553 0.891 2.444 
Standard Deviation (σ) 1.472 1.086 2.008 
2*σ 2.944 2.172 4.016 

2 Seconds 
Average 3.051 1.762 4.813 
Standard Deviation (σ) 2.820 2.151 3.876 
2*σ 5.640 4.302 7.751 

3 Seconds 
Average 4.696 2.743 7.440 
Standard Deviation (σ) 4.274 3.375 5.943 
2*σ 8.549 6.750 11.887 

4 Seconds 
Average 6.537 3.837 10.374 
Standard Deviation (σ) 5.911 4.762 8.311 
2*σ 11.821 9.525 16.621 

5 Seconds 
Average 8.553 5.027 13.580 
Standard Deviation (σ) 7.688 6.252 10.921 
2*σ 15.376 12.504 21.842 
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Table 5-8 Error analysis of test scenario 4 

  

Speed  
(Meters per Sec) 

1 Second 
Average 0.376 
Standard Deviation (σ) 0.397 
2*σ 0.794 

2 Seconds 
Average 0.584 
Standard Deviation (σ) 0.625 
2*σ 1.250 

3 Seconds 
Average 0.811 
Standard Deviation (σ) 0.892 
2*σ 1.783 

4 Seconds 
Average 1.067 
Standard Deviation (σ) 1.210 
2*σ 2.419 

5 Seconds 
Average 1.354 
Standard Deviation (σ) 1.585 
2*σ 3.169 

 
Table 5-9 Error analysis of test scenario 5 

  

Heading 
(radians) 

1 Second 
Average 0.265 
Standard Deviation (σ) 0.915 
2*σ 1.831 

2 Seconds 
Average 0.419 
Standard Deviation (σ) 1.494 
2*σ 2.987 

3 Seconds 
Average 0.587 
Standard Deviation (σ) 2.199 
2*σ 4.398 

4 Seconds 
Average 0.777 
Standard Deviation (σ) 3.045 
2*σ 6.091 

5 Seconds 
Average 0.983 
Standard Deviation (σ) 4.026 
2*σ 8.051 
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Figure 5-6 Easting vs. Northing Plot for Test Scenario 1. 
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Figure 5-7 Easting and Northing vs. Time Plot for Test Scenario 1. 
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Figure 5-8 Easting vs. Time Plot with Prediction Values for Test Scenario 1. 
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Figure 5-9 Northing vs. Time with Prediction Values for Test Scenario 1. 
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Figure 5-10 Easting vs. Northing with Prediction Values for Test Scenario 1. 
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Figure 5-11 Easting vs. Northing for Test Scenario 2. 
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Figure 5-12 Easting and Northing vs. Time plot for Test Scenario 2. 
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Figure 5-13 Easting vs. Time Plot for Test Scenario 2. Boxes correspond to close-ups of data which are shown in figures 5-14, 5-15 

and 5-16 respectively. 
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Figure 5-14 Easting vs. Time with prediction values for test scenario 2. Close up of time period 44-64 seconds. 
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Figure 5-15 Easting vs. Time with prediction values for test scenario 2. Close up of time period 120-140 seconds. 
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Figure 5-16 Easting vs. Time with prediction values for test scenario 2. Close up of time period 168-188 seconds. 
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Figure 5-17 Northing vs. Time with prediction values for Test Scenario 2. 
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Figure 5-18 Northing vs. Time with prediction values for Test Scenario 2. Close up of time period 30-90 seconds. 
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Figure 5-19 Northing vs. Time with prediction values for Test Scenario 2. Close up of time period 125-155 seconds. 
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Figure 5-20 Easting Error vs. Time for test scenario 2. 
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Figure 5-21 Northing Error vs. Time for test scenario 2. 
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Figure 5-22 Easting vs. Time with prediction values for test scenario 3. Close up plots of critical sections are provided in figures  

5-23, 5-24 and 5-25 as shown. 
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Figure 5-23 Easting vs. Time with prediction values for test scenario 3. Close up of time period 44-64 seconds. 
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Figure 5-24 Easting vs. Time with prediction values for test scenario 3. Close up of time period 120-140 seconds. 
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Figure 5-25 Easting vs. Time with prediction values for test scenario 3. Close up of time period 168-188 seconds. 
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Figure 5-26 Northing vs. Time with predicted values for test scenario 3. Close ups of highlighted areas are provided in figures 5-27 

and 5-28 as indicated. 
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Figure 5-27 Northing vs. Time with predicted values for test scenario 3. Close up of time period 32-95 seconds. 
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Figure 5-28 Northing vs. Time with predicted values for test scenario 3. Close up of time period 125-155 seconds. 
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Figure 5-29 Easting Error vs. Time for test scenario 3. 
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Figure 5-30 Northing Error vs. Time for test scenario 3. 
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Figure 5-31 Velocity vs. Time plot for test scenario 4. 
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Figure 5-32 Velocity vs. Time plot with prediction values for test scenario 4. 
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Figure 5-33 Error vs Time for test scenario 4. 
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Figure 5-34 Heading vs. Time plot for test scenario 5. 
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Figure 5-35 Heading vs. Time plot with prediction values for test scenario 5 
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Figure 5-36 Error vs. Time plot for test scenario 5.
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CHAPTER 6 
FUTURE WORK AND CONCLUSIONS 

This dissertation has outlined the author’s work to create a centralized knowledge store 

capable of providing advanced capabilities in coping with the storage and querying of dynamic 

information. Previous chapters have dealt with the specifics of the knowledge store, its 

implementation and some preliminary results. In this chapter, the author discusses opportunities 

for future work in the area and a summary of the dissertation and its contributions to the robotics 

community as a whole. 

Future Work 

The author’s work has focused on the problem of storing and querying dynamic 

information in a centralized knowledge store. However, there are a variety of other interesting 

challenges in the realm of world modeling which are still to be addressed. A significant problem 

is that of a common taxonomy by which features and objects in the knowledge store can be 

understood. A main goal of the JAUS architecture is to promote interoperability amongst robotic 

platforms and between vendors. By adopting a common language and set of features, the 

information stored in one robot may be more readily understood and used by another. 

This alludes to another significant challenge. That is of knowledge store synchronization. 

In a future world populated by hundreds if not thousands of autonomous and semi-autonomous 

robotic platforms, sharing information between those platforms will be necessary for success. 

World Modeling and geospatial information in general have significant challenges when trying 

to combine information from multiple sources. Questions especially arise when two vehicles 

have visited the same location but have differing interpretations. Or when visiting a place 

previously visited by another platform and having a system’s sensors interpreting the 
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environment differently. Who to trust and why become significant questions which must be 

answered. 

The dynamic world model implemented and tested has shown the basic capabilities to 

handle a large variety of time-variant data. Most of the author’s results are based on the 

Statistics-Based Nth Order Polynomial Predictor which was introduced. However, this estimation 

technique does not take into account any constraints which may be known about the data set. 

Other, more complex, estimation techniques can be implemented which may yield better results 

when applied to a specific data set. One technique which holds some promise is to combine state 

estimation with other knowledge available in the knowledge store; this is often done in the 

moving objects database field. For example, a vehicle, in most cases, travels along a specific 

roadway. If knowledge of a road network is available within the knowledge store, the specific 

geometry of that road a vehicle is on can be used to constrain the solution from the estimator. 

Other information that may be useful to state estimation techniques is the location of any objects 

or obstacles and the location of other known robots in the case of a multi-robot system. Other 

estimation techniques, such as Kalman filters or neural networks, may benefit from more 

information about the nature of the dataset. For example, while the polynomial predictor shows 

good results for most of the object-tracking problem, it does exhibit large errors around changes 

in the data trends. Objects which move more rapidly or in tighter quarters could demonstrate 

even more sudden changes. Using a model-based approach might yield better results in these 

environments through an understanding of the underlying dynamics of the system. This could 

allow the estimator to anticipate the future state based on the current state and the realm of 

possible or probable inputs to the system. 
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The polynomial predictor implemented by the author has areas for future improvement as 

well. One of the greatest strengths of the author’s approach is the predictor’s ability to be applied 

to a large variety of time-variant data. Due to a lack of assumptions about the data or its 

behavior, the polynomial predictor works by observing the trend of a data set and 

extrapolating an assumption that a given trend will continue for some future time period. 

However, several key areas in the identification of the appropriate future trend could be 

improved upon. First, it is hypothesized that the use of the configuration parameters window size 

and window count could be done away with. Rather than iterate on the data set looking for an 

appropriate history size, some method could be devised to identify the exact spot in the history to 

which a polynomial should be fit. The author attempted to solve this same problem by examining 

the time derivative of the data looking for local minimum and maximum points to indicate 

significant change in the data. This approach did not yield favorable results for the author, but 

may still be valid. Other approaches investigated but not test by the author were statistics based 

to find some point at which the data shows a significant change or variation in trend. 

Another key part of the polynomial predictor algorithm is the evaluation of different 

solutions. With the current approach of analyzing a number of different “windows,” the one with 

the lowest order is selected as discussed previously. The reason the lowest order polynomial is 

selected is because higher-order polynomials tend to exhibit much larger errors when used for 

extrapolation. However, it is possible that these higher order polynomials might provide better 

estimation around trend changes, because they address the nonlinearity of the data at those points. 

Therefore it is hypothesized that some other metric for the evaluation of the appropriate solution 

could be used and yield better results than the current method. 
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The current implementation of the dynamic world model does not provide any reasoning or 

analysis of the estimator solutions. Rather, the solution, as found by a prediction algorithm, is 

reported as-is. Many times this is the proper behavior. However, some form of oversight or 

regulation functionality could provide added value to the system. For example, while an object 

may move hundreds of meters through the course of its observed behavior, it is very often not 

going to do so instantaneously, or near-instantaneously. The capability in the world model to 

detect situations where a prediction has a high likelihood of being incorrect could either prevent 

those situations or at least inform a client that such an error may exist. Similar capabilities could 

(and perhaps should) be implemented in the prediction algorithms themselves, however building 

this into the primary world model framework would provide basic oversight to all prediction 

methods deployed. 

Similarly, the current implementation requires that the client which generates the data 

identify the estimation technique to be used with a particular data set. Nontheless, no verification 

of the appropriateness of the selected technique is done. Adding the ability for the knowledge 

store to analyze or monitor the accuracy of the estimator, in real-time, may allow the knowledge 

store to alert clients that make use of that data when an inappropriate or significantly bad 

estimation technique is being used. Another approach may be to put the onus on the world model 

to select an appropriate estimation technique from a collection automatically. This would still 

allow for a large variety of techniques to be deployed for use, but exactly which method to use 

would be selected by the knowledge store using some criterion or other intelligent reasoning 

algorithm. 
Conclusion 

These ideas are only the tip of the iceberg for the future of world modeling. As the 

capabilities and expectations of robotic systems grow, the need for more accurate and powerful 
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knowledge about the world around the system grows with it. Each new mission holds unique 

challenges which robotic engineers must solve. 

This dissertation has presented the author’s work in developing a new and novel approach 

to storing and querying the state of dynamic information. It began with some background 

motivation and a simple problem statement. The world is moving, and the robots in it need to be 

capable of dealing with dynamic constraints. In Chapter 2, background literature is presented 

which covers a range of topics from motion planning to spatial databases. Chapter 3 outlined the 

author’s novel architecture used to solve various spatiotemporal problems. Also, included in 

Chapter 3 is a technical discussion of a unique new approach to estimating future state of a 

continuous time-variant function which works in real-time without a priori knowledge of the 

function or any system models. Chapter 4 provides details on the author’s implementation of this 

solution and Chapter 5 discusses some results obtained through 5 test scenarios. 

While the author’s work has focused on the tracking and prediction of moving objects as 

observed by some sensing component, the architecture presented should be capable of handling a 

large variety of objects and attributes, any of which may be dynamic and changing. The work 

presented herein provides the start to a whole new series of challenges and solutions that may 

help propel autonomous and semi-autonomous vehicles out of science fiction and into the real 

world. 
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APPENDIX A 
JAUS WORLD MODEL MESSAGE SET 

To support the author’s research, the existing JAUS World Model Vector Knowledge Store 

message set needed to be modified to include a number of additional fields and parameters. Also, 

a number of new messages needed to be implemented to take full advantage of the new 

architecture. What follows is a listing of the complete message set, including pre-existing JAUS 

messages and any messages created or changed by the author. 

Local Data Types: 

 JAUS Vector Object 
Input Messages: 

 Code F021h: Set Vector Knowledge Store Feature Class Metadata 
 Code F023h: Terminate Vector Knowledge Store Data Transfer 
 Code F120h: Request Vector Knowledge Store Object ID Block 
 Code F121h: Create Vector Knowledge Store Object(s) 
 Code F122h: Modify Vector Knowledge Store Object(s) 
 Code F123h: Delete Vector Knowledge Store Object(s) 
 Code F130h: Query Vector Knowledge Store Object(s) 
 Code F131h: Query Vector Knowledge Store Feature Class Metadata 
 Code F132h: Query Vector Knowledge Store Geospatial Bounds 
 Code F133h: Query Vector Knowledge Store Temporal Bounds 
 Code F134h: Query Vector Knowledge Store Object(s) Future State  

Output Messages: 

 Code F320h: Assign Vector Knowledge Store Object ID Block 

 Code F321h: Report Vector Knowledge Store Object(s) Creation 

 Code F322h: Report Vector Knowledge Store Object(s) Modification 

 Code F323h: Report Vector Knowledge Store Object(s) Deletion 

 Code F330h: Report Vector Knowledge Store Objects 

 Code F331h: Report Vector Knowledge Store Feature Class Metadata 

 Code F332h: Report Vector Knowledge Store Geospatial Bounds 

 Code F333h: Report Vector Knowledge Store Temporal Bounds 

 Code F334h: Report Vector Knowledge Store Object(s) Future State 

 Code F424h: Report Vector Knowledge Store Data Transfer Termination 
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JAUS Vector Object 

Most of the Vector Knowledge Store messages deal with the transport or modification of 

geospatial objects and their attributes. To that end, the author has modified the messages to 

include a new concept in JAUS, a local data type. The local data type, a Vector Object, consists 

of a series of message fields which are constant anytime the data type is used. Near future work 

in JAUS is to implement the complete message set in XML and one feature of the proposed 

XML schema is to support this kind of defined and reusable local data types. Another unique 

feature of the Vector Object is that is makes use of a local presence vector. While presence 

vectors have been used extensively in the JAUS message set in the past, never have they been 

used to control looping chunks of dynamic code. The Vector Object Presence Vector defines 

which fields are present in an individual Vector Object just as it would for a message. Table A-1 

shows the Vector Object fields. 

Code F021h: Set Vector Knowledge Store Feature Class Metadata 

The Code F021h: Set Vector Knowledge Store Feature Class Metadata message allows the 

creation, modification, or deletion of feature class metadata. The format of these metadata is not 

specified. It is left to the system designer to develop a convention for doing this. Initially these 

data are to be used by the human operators.  In the future a convention may be established. Table 

A-2 shows the fields contained in this message. 

Code F023h: Terminate Vector Knowledge Store Data Transfer 

The Code F023h: Terminate Vector Knowledge Store Data Transfer message is a 

command class message that shall cause the vector knowledge store to immediately terminate the 

transfer of all current and outstanding data destined to the requesting component.  Upon 

termination, the vector knowledge store shall send the requestor the Code F424h: Report Vector 

Knowledge Store Data Transfer Termination message. 
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Code F120h: Request Vector Knowledge Store Object ID Block 

The Code F120: Request Vector Knowledge Store Object Id Block message is used to 

request a collection of unique (and continuous) object ids. The knowledge store will attempt to 

set aside the requested block side object IDs for use only by the requesting component. This 

allows a component to assign ids to objects itself and guarantee there will not be a conflict in the 

knowledge store. Table A-3 shows the fields contained in this message. 

Code F121h: Create Vector Knowledge Store Object(s) 

The Code F121h: Create Vector Knowledge Store Objects message is used to add objects 

to the Vector Knowledge Store.  This message allows multiple vector objects to be created using 

a single message. Field 1 of this message is the creation message properties.  If bit zero is set, 

then the knowledge store shall return the Code F321h: Report Vector Knowledge Store Object(s) 

Creation message with the local request identifier specified in Field 2. Field 3 indicates the 

number of vector objects included in the message. Field 4 is the beginning of the definition of a 

single vector object. Each vector object is defined as outlined above in the Vector Object local 

data type. Table A-4 shows the fields contained in this message. 

Code F122h: Modify Vector Knowledge Store Object(s) 

The Code F122h: Modify Vector Knowledge Store Objects message is used to modify 

existing objects in the Vector Knowledge Store.  This message allows multiple vector objects to 

be modified using a single message. Field 1 of this message is the message properties.  If bit zero 

is set, then the knowledge store shall return the Code F322h: Report Vector Knowledge Store 

Object(s) Modification message with the local request identifier specified in Field 2. Field 3 

indicates the number of vector objects included in the message. Field 4 is the beginning of the 

definition of a single vector object. Each vector object is defined as outlined above in the Vector 
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Object local data type. Note that in this message, the Object Id field of each Vector Object is not 

optional and must be included. Table A-5 shows the fields contained in this message. 

Code F123h: Delete Vector Knowledge Store Object(s) 

The Code F123h: Delete Vector Knowledge Store Object(s) message is used by a 

requesting component to delete objects from the Vector Knowledge Store. This message allows 

for a large number of objects to be removed from the knowledge store. It specifies the objects for 

removal in one of three ways; specific object ID, object attributes or deletion region. Table A-6 

shows the fields contained in this message. 

Code F131h: Query Vector Knowledge Store Feature Class Metadata 

The Code F131h: Query Vector Knowledge Store Feature Class Metadata message shall 

cause the Vector Knowledge Store to reply to the requestor with the Code F331h: Report Vector 

Knowledge Store Feature Class Metadata message with the requested data. There is a single field 

associated with this message.  This field specifies the feature class metadata to return in the 

reply.  There is also an option to return metadata for all feature classes present in the queried 

vector knowledge store. Table A-7 shows the fields contained in this message. 

Code F130h: Query Vector Knowledge Store Object(s) 

The Code F130h: Query Vector Knowledge Store Objects message allows the access to 

objects within the vector knowledge store. Table A-8 shows the fields contained in this message. 

Code F132h: Query Vector Knowledge Store Geospatial Bounds 

The Code 2A22h: Query Vector Knowledge Store Geospatial Bounds message is used to 

request the spatial extents of a single feature class or of all feature classes within a vector 

knowledge store.  The knowledge store shall respond with the Code 4A23h: Report Vector 

Knowledge Store Geospatial Bounds message. The boundary is represented by two points which 
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represent the rectangular region that just covers all of the data within the feature class layer or 

layers. Table A-9 shows the fields contained in this message. 

Code F133h: Query Vector Knowledge Store Temporal Bounds 

The Code F133h: Query Vector Knowledge Store Temporal Bounds message is used to 

request the temporal extents of a single feature class or of all feature classes within a vector 

knowledge store.  The knowledge store shall respond with the Code F433h: Report Vector 

Knowledge Store Temporal Bounds message. Table A-10 shows the fields contained in this 

message. 

Code F134h: Query Vector Knowledge Store Object Future State 

The Code F134h: Query Vector Knowledge Store Object Future State message shall cause 

the Vector Knowledge Store to reply to the requestor with the Code F334h: Report Vector 

Knowledge Store Object Future State message with the requested data. Note: Relative Time is a 

time difference from the time the Vector Knowledge Store receives the message. Table A-11 

shows the fields contained in this message. 

Code F320h: Assign Vector Knowledge Store Object ID Block 

The Code F320h: Assign Vector Knowledge Store Object Id Block message shall be sent 

by the knowledge store in response to a Code F120h: Request Vector Knowledge Store Object ID 

Block message. It contains the Local Request ID of the originating request, along with the upper 

and lower object ID blocks. This block is considered continuous between the two bounds 

returned. Values given are inclusive. Table A-12 shows the fields contained in this message. 

Code F321h: Report Vector Knowledge Store Object(s) Creation 

The Code F321h: Report Vector Knowledge Store Object Creation message is used to 

confirm creation of objects in the vector knowledge store.  This message is sent only when an 

object creation message is requested by setting bit zero in the Code F121h: Create Vector 
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Knowledge Store Object message.  If this bit is set, this message will be transmitted and the local 

request identifier (field 1) is set to the value sent with the Code F121h: Create Vector Knowledge 

Store Object message. Table A-13 shows the fields contained in this message. 

Code F322h: Report Vector Knowledge Store Object(s) Modification 

The Code F322h: Report Vector Knowledge Store Object(s) Modification message is used 

to confirm modification of the specified objects in the vector knowledge store. This message is 

only sent when confirmation is requested in the Code F122h: Modify Vector Knowledge Store 

Object(s) message. The local request identifier is the one included in the original modification 

message. Each object included in the modification is reported on with a success or failure of the 

request. Table A-14 shows the fields contained in this message. 

Code F323h: Report Vector Knowledge Store Object(s) Deletion 

The Code F323h: Report Vector Knowledge Store Object(s) Deletion message is used to 

confirm deletion of objects from the vector knowledge store. This message is only sent when 

confirmation is requested in the Code F123h: Delete Vector Knowledge Store Object(s) 

message. The local request identifier is the one included in the original message. The object ID 

of each object removed from the knowledge store is returned. The deletion result field is used to 

indicate success or failure of the overall deletion request and indicates failure if the original 

request was improper in any form. Table A-15 shows the fields contained in this message. 

Code F330h: Report Vector Knowledge Store Objects 

The Code F330h: Report Vector Knowledge Store Objects message is sent in direct 

response to a Code F130h: Query Vector Knowledge Store Objects message. Table A-16 shows 

the fields contained in this message. 
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Code F331h: Report Vector Knowledge Store Feature Class Metadata 

The Code F331h: Report Vector Knowledge Store Feature Class Metadata message allows 

access to feature class metadata stored within the vector knowledge store.  It is transferred in 

response to the Code F131h: Query Vector Knowledge Store Feature Class Metadata message. If 

the query message requests all feature classes, a separate message shall be sent for each feature 

class. These metadata are entered using the Code F021h: Set Vector Knowledge Store Feature 

Class Metadata message. Table A-17 shows the fields contained in this message. 

Code F332h: Report Vector Knowledge Store Geospatial Bounds 

The Code F332h: Report Vector Knowledge Store Geospatial Bounds message format is 

shown below.  This message reports the bounds as a response to the Query Vector Knowledge 

Store Bounds message.  In this message, the knowledge store returns the two geographic points 

that represent the extents of the data within a feature class layer or all feature class layers. Table 

A-18 shows the fields contained in this message. 

Code F333h: Report Vector Knowledge Store Temporal Bounds 

The Code F333h: Report Vector Knowledge Store Temporal Bounds message format is shown 

below. This message reports the bounds as a response to the Query Vector Knowledge Store 

Temporal Bounds message. Table A-19 shows the fields contained in this message. 

Code F334h: Report Vector Knowledge Store Object(s) Future State 

The Code F334h: Report Vector Knowledge Store Object(s) Future State message is sent 

in response to a Code F134h: Query Vector Knowledge Store Object Future State message. It 

includes the objects for which the future state was queried along with the results. Table A-20 

shows the fields contained in this message. 
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Code F424h: Report Vector Knowledge Store Data Transfer Termination 

The Code F424h: Report Vector Knowledge Store Data Transfer Termination message notifies 

other JAUS components that data that were being transferred or were going to be transferred to 

them has been stopped. This message is sent in response to the Code F023h: Terminate Vector 

Knowledge Store Data Transfer message. It is also sent whenever data transfer is interrupted due 

to a change in the component state. 
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Table A-1 JAUS Vector Object Mapping 
Field # Name Type Units Interpretation PV Bit # 

 Object Presence 
Vector 

Short See 
Mapping 

Bit Field (See column for 
Object PV Mapping) 

 

 Object  ID Unsigned 
Integer 
 

N/A 0x00000000 – Reserved 
0 

 Object Type Byte N/A Enumeration 
0: Point 
1: Line 
2: Polygon 
3 – 255: Reserved 

 

 Object Buffer Float Meters  1 

 Object 
Estimation Type 

Byte N/A Enumeration 
0: Static 
1 – 254: Algorithm Id 
255: Reserved 

2 

 Object Feature 
Class Count (m) 

Unsigned 
Short 
Integer 

N/A Note: If this field is Presence 
Vectored out, it will be 
assumed to be equal to 1 

3 

 Object Feature 
Class 1 Id 

Unsigned 
Short 
Integer 

N/A Enumeration 
0 … 65,534 - By 
implementation. 
65,535 – Reserved 

 

 Object Feature 
Class 1 
Estimation Type 

Byte N/A Enumeration 
0: Static 
1 – 254: Algorithm Id 
255: Reserved 

4 

 Object Feature 
Class 1 Attribute 
Data Type  

Byte N/A Enumeration 
0: Byte 
1: Short Integer 
2: Integer 
3: Long Integer 
4: Unsigned Short Integer 
5: Unsigned Integer 
6: Unsigned Long Integer 
7: Float 
8: Long Float 
9: RGB (3 Bytes) 
10 – 255: Reserved 

 

 Object Feature 
Class 1 Attribute 
Value Count (n) 

Unsigned 
Integer 

N/A Note: If this field is Presence 
Vectored out, it will be 
assumed to be equal to 1 

5 

 Object Feature 
Class 1 Attribute 
Value 1 

Byte Percentage 0-100% confidence in the 
attribute value 6 
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Field # Name Type Units Interpretation PV Bit # 

Confidence 
Value 

 Object Feature 
Class 1 Attribute 
Value 1 

Varies 
(see field 
4) 

Varies with 
Feature 
Class 

 
 

 Object Feature 
Class 1 Attribute 
Value 1 Lower 
Bound 

Varies 
(see field 
4) 

Varies with 
Feature 
Class 

Used to provide a lower 
bound to the estimated 
Attribute Value 

7 

 Object Feature 
Class 1 Attribute 
Value 1 Upper 
Bound 

Varies 
(see field 
4) 

Varies with 
Feature 
Class 

Used to provide an upper 
bound to the estimated 
Attribute Value 

7 

 Object Feature 
Class 1 Attribute 
Value 1 Time 
Stamp 

Unsigned 
Integer 

N/A Bits 0-9:  milliseconds, 
range 0...999 

Bits 10-15:  Seconds, range 
0...59 

Bits 16 – 21:  Minutes, range 
0...59 

Bits 22-26:  Hour (24 hour 
clock), range 0..23 

Bits 27-31:  Day, range 0...31 

8 

 … … … …  

 Object Feature 
Class 1 Attribute 
Value n 
Confidence 
Value 

Byte Percentage 0-100% confidence in the 
attribute value 

6 

 Object Feature 
Class 1 Attribute 
Value n 

Varies 
(see field 
4) 

Varies with 
Feature 
Class 

 
 

 Object Feature 
Class 1 Attribute 
Value n Lower 
Bound 

Varies 
(see field 
4) 

Varies with 
Feature 
Class 

Used to provide a lower 
bound to the estimated 
Attribute Value 

7 

 Object Feature 
Class 1 Attribute 
Value n Upper 
Bound 

Varies 
(see field 
4) 

Varies with 
Feature 
Class 

Used to provide an upper 
bound to the estimated 
Attribute Value 

7 

 Object Feature 
Class 1 Attribute 
Value n Time 
Stamp 

Unsigned 
Integer 

N/A Bits 0-9:  milliseconds, 
range 0...999 
Bits 10-15:  Seconds, range 
0...59 
Bits 16 – 21:  Minutes, range 

8 
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Field # Name Type Units Interpretation PV Bit # 

0...59 
Bits 22-26:  Hour (24 hour 
clock), range 0..23 
Bits 27-31:  Day, range 0...31 

 … … … …  

 Object Feature 
Class m Id 

Unsigned 
Short 
Integer 

N/A Enumeration 
0 … 65,534 - By 
implementation. 
65,535 – Reserved 

 

 Object Feature 
Class m 
Estimation Type 

Byte N/A Enumeration 
0: Static 
1 – 254: Algorithm Id 
255: Reserved 

4 

 Object Feature 
Class m 
Attribute Data 
Type  

Byte N/A Enumeration 
0: Byte 
1: Short Integer 
2: Integer 
3: Long Integer 
4: Unsigned Short Integer 
5: Unsigned Integer 
6: Unsigned Long Integer 
7: Float 
8: Long Float 
9: RGB (3 Bytes) 
10 – 255: Reserved 

 

 Object Feature 
Class m 
Attribute Value 
Count (n) 

Unsigned 
Integer 

N/A Note: If this field is Presence 
Vectored out, it will be 
assumed to be equal to 1 

5 

 Object Feature 
Class m 
Attribute Value 
1 Confidence 
Value 

Byte Percentage 0-100% confidence in the 
attribute value 

6 

 Object Feature 
Class m 
Attribute Value 
1 

Varies 
(see field 
4) 

Varies with 
Feature 
Class 

 

 

 Object Feature 
Class m 
Attribute Value 
1 Lower Bound 

Varies 
(see field 
4) 

Varies with 
Feature 
Class 

Used to provide a lower 
bound to the estimated 
Attribute Value 

7 

 Object Feature 
Class m 
Attribute Value 

Varies 
(see field 
4) 

Varies with 
Feature 
Class 

Used to provide an upper 
bound to the estimated 
Attribute Value 

7 
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Field # Name Type Units Interpretation PV Bit # 

1 Upper Bound 

 Object Feature 
Class m 
Attribute Value 
1 Time Stamp 

Unsigned 
Integer 

N/A Bits 0-9:  milliseconds, 
range 0...999 

Bits 10-15:  Seconds, range 
0...59 

Bits 16 – 21:  Minutes, range 
0...59 

Bits 22-26:  Hour (24 hour 
clock), range 0..23 

Bits 27-31:  Day, range 0...31 

8 

 … … … …  

 Object Feature 
Class m 
Attribute Value 
n Confidence 
Value 

Byte Percentage 0-100% confidence in the 
attribute value 

6 

 Object Feature 
Class m 
Attribute Value 
n 

Varies 
(see field 
4) 

Varies with 
Feature 
Class 

 

 

 Object Feature 
Class m 
Attribute Value 
n Lower Bound 

Varies 
(see field 
4) 

Varies with 
Feature 
Class 

Used to provide a lower 
bound to the estimated 
Attribute Value 

7 

 Object Feature 
Class m 
Attribute Value 
n Upper Bound 

Varies 
(see field 
4) 

Varies with 
Feature 
Class 

Used to provide an upper 
bound to the estimated 
Attribute Value 

7 

 Object Feature 
Class m 
Attribute Value 
n Time Stamp 

Unsigned 
Integer 

N/A Bits 0-9:  milliseconds, 
range 0...999 

Bits 10-15:  Seconds, range 
0...59 

Bits 16 – 21:  Minutes, range 
0...59 

Bits 22-26:  Hour (24 hour 
clock), range 0..23 

Bits 27-31:  Day, range 0...31 

8 

 Object Position 
Count (r) 

Unsigned 
Integer 

N/A Note: If this field is 
Presence Vectored out, it 
will be assumed to be equal 
to 1 

9 

 Object Position 1 
Time  Stamp 

Unsigned 
Integer 

N/A Bits 0-9:  milliseconds, 
range 0...999 

10 
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Field # Name Type Units Interpretation PV Bit # 

Bits 10-15:  Seconds, range 
0...59 

Bits 16 – 21:  Minutes, range 
0...59 

Bits 22-26:  Hour (24 hour 
clock), range 0..23 

Bits 27-31:  Day, range 0...31 

 Object Position 1 
Confidence 
Value 

Byte N/A 0-100% confidence in the 
position values 11 

 Number of 
Points for Object 
Position 1 (p) 

Unsigned 
Short 
Integer 

N/A  
 

 Object Position 1 
Point 1 Latitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -90 
     Upper Limit = 90 

 

 Object Position 1 
Point 1 
Longitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -180 
     Upper Limit = 180 

 

 Object Position 1 
Point 1 Lower 
Bound Latitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -90 
     Upper Limit = 90 

12 

 Object Position 1 
Point 1 Lower 
Bound 
Longitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -180 
     Upper Limit = 180 12 

 Object Position 1 
Point 1 Upper 
Bound Latitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -90 
     Upper Limit = 90 

12 

 Object Position 1 
Point 1 Upper 
Bound 
Longitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -180 
     Upper Limit = 180 12 

 … … … …  

 Object Position 1 
Point p Latitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -90 
     Upper Limit = 90 

 

 Object Position 1 
Point p 
Longitude 

Integer Degrees Scaled Integer 
     Lower Limit = -180 
     Upper Limit = 180 
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Field # Name Type Units Interpretation PV Bit # 

(WGS84) 

 Object Position 1 
Point p Lower 
Bound Latitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -90 
     Upper Limit = 90 

12 

 Object Position 1 
Point p Lower 
Bound 
Longitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -180 
     Upper Limit = 180 12 

 Object Position 1 
Point p Upper 
Bound Latitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -90 
     Upper Limit = 90 

12 

 Object Position 1 
Point p Upper 
Bound 
Longitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -180 
     Upper Limit = 180 12 

 … … … …  

 

Object Position r 
Time  Stamp  

Unsigned 
Integer 

N/A Bits 0-9:  milliseconds, 
range 0...999 

Bits 10-15:  Seconds, range 
0...59 

Bits 16 – 21:  Minutes, range 
0...59 

Bits 22-26:  Hour (24 hour 
clock), range 0..23 

Bits 27-31:  Day, range 0...31 

10 

 Object Position r 
Confidence 
Value 

Byte N/A 0-100% confidence in the 
position values 11 

 Number of 
Points for Object 
Position r (p) 

Unsigned 
Short 
Integer 

N/A  
 

 Object Position r 
Point 1 Latitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -90 
     Upper Limit = 90 

 

 Object Position r 
Point 1 
Longitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -180 
     Upper Limit = 180 

 

 Object Position r 
Point 1 Lower 
Bound Latitude 

Integer Degrees Scaled Integer 
     Lower Limit = -90 
     Upper Limit = 90 

12 
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Field # Name Type Units Interpretation PV Bit # 

(WGS84) 

 Object Position r 
Point 1 Lower 
Bound 
Longitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -180 
     Upper Limit = 180 12 

 Object Position r 
Point 1 Upper 
Bound Latitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -90 
     Upper Limit = 90 

12 

 Object Position r 
Point 1 Upper 
Bound 
Longitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -180 
     Upper Limit = 180 12 

 … … … …  

 Object Position r 
Point p Latitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -90 
     Upper Limit = 90 

 

 Object Position r 
Point p 
Longitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -180 
     Upper Limit = 180 

 

 Object Position r 
Point p Lower 
Bound Latitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -90 
     Upper Limit = 90 

12 

 Object Position r 
Point p Lower 
Bound 
Longitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -180 
     Upper Limit = 180 12 

 Object Position r 
Point p Upper 
Bound Latitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -90 
     Upper Limit = 90 

12 

 Object Position r 
Point p Upper 
Bound 
Longitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -180 
     Upper Limit = 180 12 
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Table A-2 Code F021h: Set Vector Knowledge Store Feature Class Metadata 
Field # Name Type Units Interpretation 

1 Metadata Options Byte N/A Enumeration 
0: Append 
1: Prepend 
2: Overwrite 
3 – 254: Reserved 
255: Erase All 

2 Feature Class Unsigned Short 
Integer 

N/A Enumeration 
0 … 65,534 - By implementation. 
65,535 – Reserved 

3 Number of String 
Characters 

Unsigned Short 
Integer 

N/A 0 … 65,535 
 
This field should be equal to zero 
only when Field 1 is equal to 255 
(Erase All) 

4 Feature Class 
Metadata 

String N/A Variable length string 

 
Table A-3 Code F023h: Request Vector Knowledge Store Object ID Block 
Field # Name Type Units Interpretation 

1 Local Request ID Byte N/A The local request id is used to 
identify the response to this message 
to the originating component. 

2 Requested Block 
Size 

Unsigned 
Integer 

N/A The number of unique object ids 
being requested. 

 
Table A-4 Code F120h: Create Vector Knowledge Store Object(s) 
Field # Name Type Units Interpretation 

1 Message 
Properties 

Byte N/A Bit Field 
0: Request confirmation of  
    object creation 
1 – 7: Reserved 

2 Local Request 
ID 

Byte N/A Request identifier to be used when 
returning confirmation to requesting 
component 

3 Number of 
Objects (n) 

Unsigned 
Short Integer 

 0, reserved 
1 … 65,535 

4 Vector Object 1 JAUS Vector 
Object 

N/A This is a series of fields which follow the 
outline given for a JAUS Vector Object. 
Again, each object has a unique presence 
vector. 

 
 

… … … … 

3 + n Vector Object n JAUS Vector 
Object 

N/A This is a series of fields which follow the 
outline given for a JAUS Vector Object. 
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Field # Name Type Units Interpretation 

Again, each object has a unique presence 
vector. 

 
Table A-5 Code F122h: Modify Vector Knowledge Store Object(s) 
Field # Name Type Units Interpretation 

1 Message 
Properties 

Byte N/A Bit Field 
0: Request confirmation of object 
modification 
1 – 7: Reserved 

2 Local Request 
ID 

Byte N/A Request identifier to be used when 
returning confirmation to requesting 
component 

3 Number of 
Objects (n) 

Unsigned Short 
Integer 

 0, reserved 
1 … 65,535 

4 Vector Object 1 JAUS Vector 
Object 

N/A This is a series of fields which follow 
the outline given for a JAUS Vector 
Object. Again, each object has a unique 
presence vector. 

 … … … … 

3 + n Vector Object n JAUS Vector 
Object 

N/A This is a series of fields which follow 
the outline given for a JAUS Vector 
Object. Again, each object has a unique 
presence vector. 

 
Table A-6 Code F123h: Delete Vector Knowledge Store Object(s) 
Field # Name Type Units Interpretation PV Bit # 

1 Presence 
Vector 

Byte N/A See mapping column. 
 

 

2 Local 
Request ID 

Byte N/A Request identifier to be used when 
returning data to requesting component 

 

3 Number of 
Object IDs 
(p) 

Unsigned 
Short 
Integer 

N/A  1 

4 Object ID 1 Unsigned 
Integer 

N/A  1 

 … … … …  

3+p Object ID p Unsigned 
Integer 

N/A  1 

4+p Deletion 
Region 

JAUS 
Vector 
Object 

N/A JAUS Vector Object which defines the 
region in which objects can be deleted. 
Also can specify the feature classes and 
attribute values which may be deleted. 

2 
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Table A-7 Code F130h: Query Vector Knowledge Store Object(s) 
Field # Name Type Units Interpretation PV Bit # 

1 Presence 
Vector 

Unsigned 
Short 

N/A See mapping column  

2 Response 
Presence 
Vector 

Byte N/A Query Response Presence Vector.   
 
See Code F330h: Report Vector 
Knowledge Store Objects message 
for Presence Vector format. 

 

3 Local 
Request 
ID 

Byte N/A Request identifier to be used when 
returning data to requesting 
component 

 

4 History 
Size 

Unsigned 
Integer 

N/A Bits 0-9:  milliseconds, range 0...999 

Bits 10-15:  Seconds, range 0...59 

Bits 16 – 21:  Minutes, range 0...59 

Bits 22-26:  Hour (24 hour clock), 
range 0..23 

Bits 27-31:  Day, range 0...31 

0 

5 Number 
of Object 
IDs (p) 

Unsigned 
Short 
Integer 

N/A  1 

6 Object ID 
1 

Unsigned 
Integer 

N/A  1 

… … … … …  

5+p Object ID 
p 

Unsigned 
Integer 

N/A  1 

6+p Object 
Estimation 
Type 

Byte N/A Enumeration 
0: Static 
1 – 254: Algorithm Id 
255: All but Static 

2 

7+p Region 
Type 

Byte N/A Enumeration 
0: Point 
1: Line 
2: Polygon 
3 – 255: Reserved 

3 

8+p Region 
Buffer 

Float Meters  4 

9+p Number 
of Feature 
Classes  
(n) 

Byte N/A  5 

10+p Feature 
Class 1 

Unsigned 
Short 
Integer 

N/A Enumeration 
0 … 65,534 - By implementation. 
65,535 – All 

6 



 

144 

Field # Name Type Units Interpretation PV Bit # 

11+p Feature 
Class 1 
Estimation 
Type 

Byte N/A Enumeration 
0: Static 
1 – 254: Algorithm Id 
255: All but Static 

7 

12+p Feature 
Class 1 
Attribute 
Data Type  

Byte N/A Enumeration 
0: Byte 
1: Short Integer 
2: Integer 
3: Long Integer 
4: Unsigned Short Integer 
5: Unsigned Integer 
6: Unsigned Long Integer 
7: Float 
8: Long Float 
9: RGB (3 Bytes) 
10 – 255: Reserved 

8 

13+p Feature 
Class 
Attribute 
1 

Varies 
(see field 
4) 

Varies 
with 
Feature 
Class 

 8 

 … … … …  

10+p+3n Feature 
Class n 

Unsigned 
Short 
Integer 

N/A Enumeration 
0 … 65,534 - By implementation. 
65,535 – All 

6 

11+p+3n Feature 
Class n 
Estimation 
Type 

Byte N/A Enumeration 
0: Static 
1 – 254: Algorithm Id 
255: All but Static  

7 

12+p+3n Feature 
Class n 
Attribute 
Data Type  

Byte N/A Enumeration 
0: Byte 
1: Short Integer 
2: Integer 
3: Long Integer 
4: Unsigned Short Integer 
5: Unsigned Integer 
6: Unsigned Long Integer 
7: Float 
8: Long Float 
9: RGB (3 Bytes) 
10 – 255: Reserved 

8 

13+p+3n Feature 
Class 
Attribute 
n 

Varies 
(see 
previous 
field) 

Varies 
with 
Feature 
Class 

 8 

14+p+3n Number 
of Region 

Unsigned 
Short 

N/A 0, reserved 
1 … 65,535 

9 
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Field # Name Type Units Interpretation PV Bit # 

Points (m) Integer 

15+p+3n Query 
Region 
Point 1 
Latitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -90 
     Upper Limit = 90 

9 

16+p+3n Query 
Region 
Point 1 
Longitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -180 
     Upper Limit = 180 

9 

 … … … …  
 Query 

Region 
Point m 
Latitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -90 
     Upper Limit = 90 

9 

 Query 
Region 
Point m 
Longitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -180 
     Upper Limit = 180 

9 

 
Table A-8 Code F131h: Query Vector Knowledge Store Feature Class Metadata 
Field # Name Type Units Interpretation 

1 Feature Class Unsigned Short 
Integer 

N/A Enumeration 
0 … 65,534 - By implementation. 
65,535 – All 

 
Table A-9 Code F132h: Query Vector Knowledge Store Geospatial Bounds 
Field # Name Type Units Interpretation 

1 Local 
Request 
ID 

Byte N/A Request identifier to be used when returning 
data to requesting component 

2 Feature 
Class 

Unsigned 
Short Integer 

N/A Enumeration 
0 … 65,534 - By implementation. 
65,535 – All Feature Classes 

 
Table A-10 Code F133h: Query Vector Knowledge Store Temporal Bounds 
Field # Name Type Units Interpretation 

1 Local 
Request ID 

Byte N/A Request identifier to be used when returning data 
to requesting component 

2 Feature 
Class 

Unsigned 
Short 
Integer 

N/A Enumeration 
0 … 65,534 - By implementation. 
65,535 – All Feature Classes 
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Table A-11 Code F134h: Query Vector Knowledge Store Object(s) Future State 
Field # Name Type Units Interpretation PV Bit # 
1 Presence 

Vector 
Byte N/A See mapping column  

2 Local Request 
ID 

Byte N/A Request identifier to be used 
when returning data to 
requesting component 
 

 

3 Query Type Byte N/A Enumeration 
0: Absolute Time 
1: Relative Time 
2 – 255: Reserved 

 

4 Query Time Unsigned 
Integer 

N/A Bits 0-9:  milliseconds, range 
0...999 
Bits 10-15:  Seconds, range 
0...59 
Bits 16 – 21:  Minutes, range 
0...59 
Bits 22-26:  Hour (24 hour 
clock), range 0..23 
Bits 27-31:  Day, range 0...31 

 

5 Object ID Unsigned 
Integer 

N/A   

6 Object 
Confidence 
Value 

Byte Percent Interpretation: 
95 would be a 95% 
Confidence Interval 
(i.e. α=0.05) 

1 

7 Number of 
Feature 
Classes  (m) 

Unsigned 
Short 
Integer 

N/A   

8 Feature 
Class 1 

Unsigned 
Short 
Integer 

N/A Enumeration 
0 … 65,534 – By 
implementation. 
65,535 – All 

 

9 Feature 
Class 1 
Confidence 
Interval 
Percentage 

Byte Percent Interpretation: 
95 would be a 95% 
Confidence Interval 
(i.e. α=0.05) 

2 

 … … …   

7 + m Feature 
Class m 

Unsigned 
Short 
Integer 

N/A Enumeration 
0 … 65,534 - By 
implementation. 
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Field # Name Type Units Interpretation PV Bit # 
65,535 – All 

7 + 
2m 

Feature 
Class m 
Confidence 
Interval 
Percentage 

Byte Percent Interpretation: 
95 would be a 95% 
Confidence Interval  
(i.e. α=0.05) 

 

 
Table A-12 Code F320h: Assign Vector Knowledge Store Object ID Block 
Field # Name Type Units Interpretation 

1 Local Request ID Byte N/A Request identifier sent by 
requesting component 

2 Object ID Block 
Lower Bound 

Unsigned 
Integer 

N/A Allocated Object ID block, 
lower bound 

3 Object ID Block 
Upper Bound 

Unsigned 
Integer 

N/A Allocated Object ID block, 
upper bound 

 
Table A-13 Code F321h: Report Vector Knowledge Store Object(s) Creation 
Field # Name Type Units Interpretation 

1 Local Request ID Byte N/A Local request identifier sent by creating 
component 

2 Number of 
Object IDs (p) 

Unsigned 
Short Integer 

N/A  

3 Object ID 1 Unsigned 
Integer 

 0x00000000 Invalid Object ID This value is 
used to inform the remote component that, for 
some reason, the corresponding object could 
not be created.  

 … … … … 

2+p Object ID p Unsigned 
Integer 

 0x00000000 Invalid Object ID This value is 
used to inform the remote component that, for 
some reason, the corresponding object could 
not be created. 

 
Table A-14 Code F322h: Report Vector Knowledge Store Object(s) Modification 
Field # Name Type Units Interpretation 

1 Local Request ID Byte N/A Local request identifier sent by creating 
component 

2 Number of 
Object IDs (p) 

Unsigned 
Short Integer 

N/A  

3 Object ID 1 Unsigned 
Integer 

N/A Unique Object ID of the object modified 

4 Object 1 
Modification 
Result 

Byte N/A Enumeration: 
0: Failure 
1: Success 
2-255: Reserved 
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Field # Name Type Units Interpretation 

… … … … … 

2+p Object ID p Unsigned 
Integer 

N/A Unique Object ID of the object modified 

3+p Object p 
Modification 
Result 

 N/A Enumeration: 
0: Failure 
1: Success 
2-255: Reserved 

 
Table A-15 Code F323h: Report Vector Knowledge Store Object(s) Deletion 
Field # Name Type Units Interpretation 

1 Local Request ID Byte N/A Local request identifier sent by creating 
component 

2 Deletion Result Byte N/A Enumeration: 
0: Failure 
1: Success 
2-255: Reserved 

3 Number of 
Object IDs (p) 

Unsigned 
Short Integer 

N/A This being equal to 0 does not necessarily 
indicate a failure, as a proper deletion 
request may still yield 0 objects deleted 

4 Object ID 1 Unsigned 
Integer 

N/A Unique Object ID of the object deleted 

… … … … … 

3+p Object ID p Unsigned 
Integer 

N/A Unique Object ID of the object deleted 

 
Table A-16 Code F330h: Report Vector Knowledge Store Object(s) 
Field # Name Type Units Interpretation PV Bit # 

1 Presence 
Vector 

Byte N/A Bit Field: 
Bit 0: Data is included after field 3. 

This is based on the presence 
vector received in the Code 
F130h: Query Vector 
Knowledge Store Objects 
Message. If data are present 
after field 3, this bit should be 
set. 

Bits 1-7: Reserved 

 

2 Local 
Request ID 

Byte N/A Request identifier sent in query 
message 

 

3 Number of 
Objects (p) 

Unsigned 
Short 
Integer 

N/A Number of Objects in Response to 
Query Message 

 

4 History 
Size 

Unsigned 
Integer 

N/A Bits 0-9:  milliseconds, range 0...999 
Bits 10-15:  Seconds, range 0...59 
Bits 16 – 21:  Minutes, range 0...59 

1 
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Field # Name Type Units Interpretation PV Bit # 

Bits 22-26:  Hour (24 hour clock), 
range 0..23 
Bits 27-31:  Day, range 0...31 

5 Object 1 JAUS 
Vector 
Object 

N/A JAUS Vector Object that matches the 
originating query 

1 

 … …  …  

4+p Object p JAUS 
Vector 
Object 

N/A JAUS Vector Object that matches the 
originating query 

1 

 
Table A-17 Code F331h: Report Vector Knowledge Store Object(s) 
Field # Name Type Units Interpretation 

1 Feature Class Unsigned Short 
Integer 

N/A Enumeration 

0 … 65,534 – By 
implementation. 
65,535 – Reserved 

2 Number of String 
Characters 

Unsigned Short 
Integer 

N/A  

3 Feature Class 
Metadata 

String N/A Variable length string 

 
Table A-18 Code F332h: Report Vector Knowledge Store Geospatial Bounds 
Field # Name Type Units Interpretation 

1 Local Request 
ID 

Byte N/A Request identifier sent in query 
message 

2 Feature Class  Unsigned Short 
Integer 

N/A Enumeration 
0 … 65,534 – By implementation. 
65,535 – Reserved  

3 Southwest 
Bound 
Latitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -90 
     Upper Limit = 90 

4 Southwest 
Bound 
Longitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -180 
     Upper Limit = 180 

5 Northeast 
Bound 
Latitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -90 
     Upper Limit = 90 

6 Northeast 
Bound 
Longitude 
(WGS84) 

Integer Degrees Scaled Integer 
     Lower Limit = -180 
     Upper Limit = 180 
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Table A-19 Code F333h: Report Vector Knowledge Store Temporal Bounds 
Field # Name Type Units Interpretation 

1 Local Request 
ID 

Byte N/A Request identifier sent in query 
message 

2 Feature Class  Unsigned Short 
Integer 

N/A Enumeration 

0 … 65,534 – By implementation. 
65,535 – Reserved  

3 Time Stamp Unsigned Integer N/A 

Bits 0-9:  milliseconds, range 0...999 
Bits 10-15:  Seconds, range 0...59 
Bits 16 – 21:  Minutes, range 0...59 
Bits 22-26:  Hour (24 hour clock), range 
0..23 
Bits 27-31:  Day, range 1...31 

4 Date Stamp Unsigned Short N/A 

Bits 0-4:  Day, range 1...31 
Bits 5-8:  Month, range 1...12 
Bits 9 – 15:  Year, range 2000...2127 
Where 0 is 2000, 1 is 2001, etc. 

 
Table A-20 Code F334h: Report Vector Knowledge Store Object(s) Future State 
Field # Name Type Units Interpretation PV Bit # 

1 Local 
Request ID 

Byte N/A Request identifier sent in query 
message 

 

2 Number of 
Objects (p) 

Unsigned Short 
Integer 

N/A Number of Objects in Response to 
Query Message 

 

3 Object 1 JAUS Vector 
Object 

N/A JAUS Vector Object that matches 
the originating query 

1 

 … …  …  

2+p Object p JAUS Vector 
Object 

N/A JAUS Vector Object that matches 
the originating query 

1 
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APPENDIX B 
SAMPLE CODE EXCERPTS 

This appendix contains selections from of the code written by the author to test the 

reference implementation in the World Model Vector Knowledge Store (WMVKS). Functions 

and data structures are included based on their overall importance to key features of the 

implementation. 

JAUS Vector Object 

The JAUS Vector object is implemented as four distinct objects – 

JausWorldModelVectorObject, JausWorldModelFeatureClass, 

JausWorldModelFeatureClassAttribute and JausWorldModelSpatialDataSet. The structures are 

defined below: 

// JausWorldModelVectorObject 

typedef struct 

{ 

 JausUnsignedInteger id;       // Unique Object Id 

 JausShortPresenceVector presenceVector; // Unique (per-object)  

// presence vector for fields 

 JausByte type;    // Enumeration, see above 

 JausFloat bufferMeters; // Buffer Size in meters 

 JausByte estimator;  // Enumeration, see above 

 Vector featureClasses; // Dynamic Array of FeatureClass data 

 Vector geospatialData; // Dynamic Array of VectorDatasets  

// (position history) 

}JausWorldModelVectorObject; 

 

// JausWorldModelFeatureClass 

typedef struct 

{ 

 JausUnsignedShort id; // Enumeration, defined by system 

 

 // String of Metadata information defined for this Feature Class 

 char metaData[JAUS_WM_FC_METADATA_STRING_LENGTH];  

 

// Enumeration, defined as the type of estimation algorithm to be used  

// (0=Static, 1-254=Dynamic, 255=Reserved) 

JausByte estimator; 

 

// List of Feature Class Attributes: Data Type and values 

 Vector attributeHistory; 

 

// List of Feature Class Attributes Lower Bound Values  

 Vector ciLowerHistory; 
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// List of Feature Class Attributes Upper Bound Values  

Vector ciUpperHistory;  

 

}JausWorldModelFeatureClass; 

 

// JausWorldModelFeatureClassAttribute 

 typedef struct 

{ 

 JausByte dataType;   // Enumeration, see above 

 JausTime timeStamp;   // OPTIONAL: Valid time for this FC Attribute 

 JausByte confidenceValue;  // OPTIONAL: Confidence value or confidence 

// interval value (0-100%) 

 FeatureClassAttributeValue current;  // Attribute Value 

 FeatureClassAttributeValue lowerBound; // OPTIONAL: Lower Bound  

 FeatureClassAttributeValue upperBound; // OPTIONAL: Upper Bound 

}JausWorldModelFeatureClassAttribute; 

 

// JausWorldModelVectorObjectSpatialDataSet 

typedef struct 

{ 

 JausTime timeStamp;   // OPTIONAL: Timestamp for this reading 

 PointLla centroid;   // Centroid of this dataset 

 JausByte confidenceValue;  // OPTIONAL: confidence interval 

 Vector dataPoints;   // PointLLAs in this dataset (Lat & Lon) 

 Vector ciUpperPoints;  // OPTIONAL: PointLLAs - Confidence  

// Interval UpperBounds Points 

 Vector ciLowerPoints;  // OPTIONAL: PointLLAs - Confidence  

// Interval LowerBounds Points 

}JausWorldModelVectorObjectSpatialDataSet; 

 
Generic Predictor 

These structures are used throughout the code to store intermediate results of queries and 

reports as they are marshaled from the database to the JAUS messages and vice-versa. In the 

text, the Generic Predictor Interface is discussed. Below is the datastructure of this 

implementation. Also provided is a sample of the generic toBuffer method and the polynomial 

predictor’s toBuffer solution. 

Generic Predictor Structure 

// Generic Predictor 

typedef struct GenericPredictorStruct 

{ 

 // Unique Name 

 char name[80]; 

  

 // Estimator numeric id 

 unsigned int id; 
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 // some optimization parameters 

 unsigned long minimumPointCount; 

 unsigned long maximumPointCount; 

 

 // Current data 

 DataPoint *dataArray; 

 unsigned long dataSize; 

  

 // Generic handles to Predictor functions 

 int (* solver)(struct GenericPredictorStruct *); 

 double (* estimate)(struct GenericPredictorStruct *, double); 

 int (* solutionToBuffer)(struct GenericPredictorStruct *,  

unsigned char *buffer, unsigned int bufferSizeBytes);  

 int (* solutionFromBuffer)(struct GenericPredictorStruct *,  

unsigned char *buffer, unsigned int bufferSizeBytes);  

 void (* destroy)(struct GenericPredictorStruct *); 

  

 // Placeholder pointer for specific predictor data  

 void *solutionStruct; 

}GenericPredictorStruct; 

 

Generic Predictor ToBuffer Method 

// Generic Predictor To Buffer 

int genericPredictorSolutionToBuffer(GenericPredictor predictor,  

unsigned char *buffer, unsigned int bufferSizeBytes) 

{ 

 unsigned int index = 0; 

  

 // Pack some predictor values 

  

 // The reason we are packing the estimator id is for idetification  

// later. Because, depending on the dataSize, the object->estimator  

// does not necessarily equal estimator id 

 memcpy(buffer+index, &predictor->id, sizeof(unsigned int)); 

 index += sizeof(unsigned int); 

  

 // Pack the solution struct 

 index += predictor->solutionToBuffer(predictor, buffer+index,  

bufferSizeBytes-index); 

 return index; 

} 

 

Polynomial Predictor ToBuffer Method 

// Polynomial Predictor toBuffer 

int polyEstimatorSolutionToBuffer(GenericPredictor polyEst, unsigned char 

*buffer, unsigned int bufferSizeBytes) 

{ 

 // We are going to store 3 things: power, beta, and startX 

 // This allows us to quickly and easily use the estimator 

 unsigned int index = 0; 

 PolyEstimatorSolution sol = NULL; 

 unsigned int sizeBytes = 0; 

 

 sol = (PolyEstimatorSolution) polyEst->solutionStruct; 
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 if(!sol) 

 { 

  // Bad Pointer 

  return 0; 

 } 

  

 sizeBytes = ((sol->power+1) * sizeof(double)) + sizeof(int) +  

sizeof(double) + sizeof(unsigned int); 

  

 if(bufferSizeBytes < sizeBytes) 

 { 

  // This is a problem, not enough space in the buffer 

  return 0; 

 }   

  

 // Power 

 memcpy(buffer+index, &sol->power, sizeof(int)); 

 index += sizeof(int); 

  

 // startX 

 memcpy(buffer+index, &sol->startX, sizeof(double)); 

 index += sizeof(double); 

   

 // Betas 

 memcpy(buffer+index, sol->beta, (sol->power+1) * sizeof(double)); 

 index += (sol->power+1) * sizeof(double); 

  

 return index; 

} 

 
Process JAUS Messages 

Three particular messages define the behavior of the WMVKS. These are the create, 

modify and query future state messages. The functions that process these JAUS messages are 

included below. 

Create Objects Message 

// Process Create 

JausBoolean processCreateVksObjectsMessage(JausMessage message) 

{ 

 CreateVksObjectsMessage create = NULL; 

 ReportVksObjectsCreationMessage response = NULL; 

 JausMessage txMessage = NULL; 

 JausWorldModelVectorObject object = NULL; 

   

 unsigned int i = 0; 

 unsigned int j = 0; 

 

 int queryResult = 0; 

 

 char tempQuery[4096] = {0}; 

 char *sqlQuery = NULL; 
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 create = createVksObjectsMessageFromJausMessage(message); 

 if(!create)  

 { 

  cError("processCreateVksObjectsMessage:%d: Oops.\n", __LINE__); 

  return JAUS_FALSE; 

 } 

 

 if(jausBytePresenceVectorIsBitSet(create->messageProperties,  

VKS_CREATE_PROPERTIES_CONFIRMATION_BIT)) 

 { 

  // Confirmation requested 

  response = reportVksObjectsCreationMessageCreate(); 

  response->source->id = wmvks->address->id; 

  response->destination->id = create->source->id; 

  response->requestId = create->requestId; 

  response->objectCount = create->vectorObjects->elementCount; 

  response->objectIds = (JausUnsignedInteger *)  

malloc(response->objectCount * JAUS_UNSIGNED_INTEGER_SIZE_BYTES); 

 } 

 

 // Insert Objects into the Data Store 

 for(i = 0; i < create->vectorObjects->elementCount; i++) 

 { 

  object = (JausWorldModelVectorObject)  

create->vectorObjects->elementData[i]; 

 

  if(!jausShortPresenceVectorIsBitSet(object->presenceVector,  

JAUS_WM_OBJECT_PV_OBJECT_ID_BIT)) 

  { 

   // if the object ID bit is not set, we need to retrive the  

// next value from the id_seq so that we can set it to that 

   sprintf(tempQuery, "SELECT NEXTVAL('%s_objectid_seq');",  

objectTableName); 

   postgresDbQuery(tempQuery); 

   object->id =  

atoi(postgresDbGetResultValueByColumnName(0, "nextval")); 

    

jausShortPresenceVectorSetBit(&object->presenceVector,  

JAUS_WM_OBJECT_PV_OBJECT_ID_BIT); 

  } 

 

  sqlQuery = createCreateObjectSql(object); 

  queryResult = postgresDbQuery(sqlQuery); 

 

  // done with sqlQuery, so free it 

  free(sqlQuery); 

  

  for(j = 0; j < object->featureClasses->elementCount; j++) 

  { 

   sqlQuery = createCreateFeatureClassSql( 

object->featureClasses->elementData[j], object->id); 

   queryResult = postgresDbQuery(sqlQuery); 

 

   // done with sqlQuery, so free it 

   free(sqlQuery); 

  } 
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  if(jausBytePresenceVectorIsBitSet(create->messageProperties,  

VKS_CREATE_PROPERTIES_CONFIRMATION_BIT)) 

  { 

   // Capture Object Id 

   if(queryResult == 0) 

   { 

    // Successfully Inserted 

    if(jausShortPresenceVectorIsBitSet(object->presenceVector,  

JAUS_WM_OBJECT_PV_OBJECT_ID_BIT)) 

    { 

     response->objectIds[i] = object->id; 

    } 

    else 

    { 

     sprintf(tempQuery, "SELECT CURRVAL('%s_objectid_seq');",  

objectTableName); 

     postgresDbQuery(tempQuery); 

     response->objectIds[i] =  

atoi(postgresDbGetResultValueByColumnName(0, "currval")); 

    } 

    objectCount++;  

   } 

   else 

   { 

    // Unsuccessful 

    response->objectIds[i] = 0; 

   } 

  }  

 } 

  

 // Respond if requested 

 if(jausBytePresenceVectorIsBitSet(create->messageProperties,  

VKS_CREATE_PROPERTIES_CONFIRMATION_BIT)) 

 { 

txMessage = reportVksObjectsCreationMessageToJausMessage(response); 

  nodeManagerSend(wmvksNmi, txMessage); 

 

  jausMessageDestroy(txMessage); 

  reportVksObjectsCreationMessageDestroy(response); 

 } 

  

 createVksObjectsMessageDestroy(create); 

 return JAUS_TRUE; 

} 

 

Modify Object Message 

// Process Modify 

JausBoolean processModifyVksObjectMessage(JausMessage message) 

{ 

 ModifyVksObjectMessage modifyMsg = NULL; 

 JausWorldModelVectorObject dbObject = NULL; 

 JausWorldModelVectorObject msgObject = NULL; 

 JausWorldModelVectorObjectSpatialDataSet dataSet = NULL; 
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 char *sqlQuery = NULL; 

 char *hexString = NULL; 

 int queryResult = 0; 

 unsigned int i = 0; 

 unsigned int j = 0; 

 

 char *dataBuffer = NULL; 

 unsigned int dataSizeBytes; 

 

 JausWorldModelFeatureClass msgFeatureClass = NULL; 

 JausWorldModelFeatureClass dbFeatureClass = NULL; 

 JausWorldModelFeatureClassAttribute msgFcAttribute = NULL; 

 JausWorldModelFeatureClassAttribute dbFcAttribute = NULL; 

  

 modifyMsg = modifyVksObjectMessageFromJausMessage(message); 

 if(!modifyMsg) 

 { 

  cError("processModifyVksObjectMessage:%d: Problem unpacking  

modifyMsg\n", __LINE__); 

  return JAUS_FALSE; 

 } 

 

 // For convience, let's grab that object pointer from the message 

 msgObject = modifyMsg->vectorObject; 

  

 // Allocate memory for sqlQuery 

 sqlQuery = (char *) calloc(1, 1024); 

 

 // Now, we want to get the object (if it exists) from the dataBase 

 sprintf(sqlQuery, "SELECT vectorobject FROM %s WHERE objectid=%d;",  

objectTableName, msgObject->id); 

 queryResult = postgresDbQuery(sqlQuery); 

 free(sqlQuery); 

 

 // Check the results for errors  

 if(queryResult != 0 || postgresDbGetResultCount() < 1) 

 { 

  cError("processModifyVksObjectMessage:%d: Problem with modify.  

Object (id=%d) not found in dataBase.\n", __LINE__, msgObject->id); 

  modifyVksObjectMessageDestroy(modifyMsg); 

  return JAUS_FALSE; 

 } 

   

 // Great! Now we take that object and start comparing 

  

 // Get the objectArray so we can create a vector Object 

 hexString = postgresDbGetResultValueByColumnName(0, "vectorObject"); 

 if(!hexString) 

 { 

  cError("processModifyVksObjectMessage:%d: Problem extracting  

hexString.\n", __LINE__); 

  modifyVksObjectMessageDestroy(modifyMsg); 

  return JAUS_FALSE; 

 } 

 

 // Now convert our hexString to a VectorObject 

 dbObject = vectorObjectFromHexString(hexString);  
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 if(!dbObject) 

 { 

  cError("processModifyVksObjectMessage:%d: Problem extracting  

dbObject.\n", __LINE__); 

  modifyVksObjectMessageDestroy(modifyMsg); 

  return JAUS_FALSE; 

 } 

 

 // Ok, now we can compare the objects and update parts of the database  

// as needed. First let's compare the object types, if the Object Type  

// has changed, this could be a big problem. For now, if the type has  

// changed, we'll just throw an error since interpreting what to do is  

// complicated and unnecessary for this implementation 

 if(dbObject->type != msgObject->type) 

 { 

  cError("processModifyVksObjectMessage:%d: Problem extracting  

dbObject.\n", __LINE__); 

  vectorObjectDestroy(dbObject); 

  modifyVksObjectMessageDestroy(modifyMsg); 

  return JAUS_FALSE; 

 } 

  

 // Now, if this is a "static" object, we need to replace the  

// geospatialData 

 if(msgObject->estimator == JAUS_WM_ESTIMATOR_STATIC) 

 { 

  // Destroy the dbObject data, we're replacing it  

  vectorDestroy(dbObject->geospatialData,  

(void *) vectorObjectDataSetDestroy); 

   

  // Clone the dataSet (should only be one if static) from msgObject 

  if(msgObject->geospatialData->elementCount > 1) 

  { 

   cLog("processModifyVksObjectMessage:%d: WARNING... trying  

to modify a static object and providing more than one set of data  

points.\n"); 

  } 

   

  dbObject->geospatialData = vectorCopy(msgObject->geospatialData,  

(void *) vectorObjectDataSetCopy,  

(void *) vectorObjectDataSetDestroy);   

  if(!dbObject->geospatialData) 

  { 

   cError("processModifyVksObjectMessage:%d: Problem cloning  

msgObject->geospatialData.\n", __LINE__); 

   vectorObjectDestroy(dbObject); 

   modifyVksObjectMessageDestroy(modifyMsg); 

   return JAUS_FALSE; 

  } 

 } 

 else 

 { 

  // Else.... dynamic object 

  // We need to add the data in the msgObject to the dbObject 

  if(msgObject->geospatialData->elementCount > 1) 

  { 

   cLog("processModifyVksObjectMessage:%d: WARNING... trying  
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to modify an object and providing more than one set 

of data points.\n"); 

  } 

  for(i = 0; i < msgObject->geospatialData->elementCount; i++) 

  { 

   // BIG WARNING HERE... You REALLY should only modify with one  

// dataset. If we put in duplicate data sets, it could cause big  

// problems for some estimator algorithms. (I think) 

dataSet = vectorObjectDataSetCopy(  

(JausWorldModelVectorObjectSpatialDataSet)  

msgObject->geospatialData->elementData[i]); 

   if(!dataSet) 

   { 

    cError("processModifyVksObjectMessage:%d: Problem cloning  

dataset.\n", __LINE__); 

    vectorObjectDestroy(dbObject); 

    modifyVksObjectMessageDestroy(modifyMsg); 

    return JAUS_FALSE; 

   } 

    

   vectorAdd(dbObject->geospatialData, dataSet); 

  } 

 } 

 

 // Now that our geometry is straight, we should update the geometry object  

// in the dataBase. Note: The geometry object in the db is only the last  

// known true geometry of the object 

 hexString = vectorObjectToPostgisGeometryHexString(dbObject); 

 if(!hexString) 

 { 

  cError("createCreateObjectSql:%d: Problem with  

vectorObjectToHexBuffer!\n", __LINE__); 

  vectorObjectDestroy(dbObject); 

  modifyVksObjectMessageDestroy(modifyMsg); 

  return JAUS_FALSE; 

 } 

 

 // Allocate memory for sqlQuery 

 sqlQuery = (char *) calloc(1, 1024); 

 sprintf(sqlQuery, "UPDATE %s SET geom = 'srid=-1; %s'::geometry WHERE  

objectid = %d;", objectTableName, hexString, dbObject->id); 

 queryResult = postgresDbQuery(sqlQuery); 

 

 // We're done with this, so free it 

 free(hexString); 

 free(sqlQuery); 

 

 // Test the result of the query 

 if(queryResult != 0) 

 { 

  cLog("processModifyVksObjectMessage:%d: WARNING... Error when trying to  

update geometry for object (ID=%).\n", dbObject->id); 

 } 

  

 // Object Type test & update 

 if(dbObject->type != msgObject->type) 

 { 
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  dbObject->type = msgObject->type; 

 

  // Allocate memory for sqlQuery 

  sqlQuery = (char *) calloc(1, 1024); 

  sprintf(sqlQuery, "UPDATE %s SET object_type = %d WHERE objectid=%d;",  

objectTableName, dbObject->type, dbObject->id); 

  queryResult = postgresDbQuery(sqlQuery); 

  free(sqlQuery); 

 } 

  

 // Buffer_meters test & update 

 if(jausShortPresenceVectorIsBitSet(msgObject->presenceVector,  

JAUS_WM_OBJECT_PV_BUFFER_BIT) && dbObject->bufferMeters !=  

msgObject->bufferMeters) 

 { 

  jausShortPresenceVectorSetBit(&dbObject->presenceVector,  

JAUS_WM_OBJECT_PV_BUFFER_BIT); 

  dbObject->bufferMeters = msgObject->bufferMeters; 

 

  // Allocate memory for sqlQuery 

  sqlQuery = (char *) calloc(1, 1024); 

  sprintf(sqlQuery, "UPDATE %s SET buffer_meters = %f WHERE  

objectid=%d;", objectTableName, dbObject->bufferMeters,  

dbObject->id); 

  queryResult = postgresDbQuery(sqlQuery); 

  free(sqlQuery); 

 } 

  

 // Estimator test & update 

 if(jausShortPresenceVectorIsBitSet(msgObject->presenceVector,  

JAUS_WM_OBJECT_PV_OBJECT_ESTIMATOR_BIT) && dbObject->estimator !=  

msgObject->estimator) 

 { 

  cLog("processModifyVksObjectMessage:%d: WARNING... Changing the  

estimator might have strange consequences.\n", __LINE__); 

  jausShortPresenceVectorSetBit(&dbObject->presenceVector,  

JAUS_WM_OBJECT_PV_OBJECT_ESTIMATOR_BIT);   

   

  dbObject->estimator = msgObject->estimator; 

 

  // Allocate memory for sqlQuery 

  sqlQuery = (char *) calloc(1, 1024); 

  sprintf(sqlQuery, "UPDATE %s SET estimator = %d WHERE objectid=%d;",  

objectTableName, dbObject->estimator, dbObject->id); 

  queryResult = postgresDbQuery(sqlQuery); 

  free(sqlQuery); 

 } 

  

 // Object TimeStamp 

 // We're going to ASSUME the object timestamp has changed 

 dataSet = (JausWorldModelVectorObjectSpatialDataSet)  

dbObject->geospatialData->elementData 

[dbObject->geospatialData->elementCount-1];  

 

 // Allocate memory for sqlQuery 

 sqlQuery = (char *) calloc(1, 1024); 

 sprintf(sqlQuery, "UPDATE %s SET object_timestamp = '%s' WHERE  
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objectid=%d;", objectTableName,  

jausTimeToSqlString(dataSet->timeStamp), dbObject->id); 

 queryResult = postgresDbQuery(sqlQuery); 

 free(sqlQuery); 

  

 // OK... now we need to update featureClasses 

 // A couple notes here... first, if a feature class does not match one  

// that is already attached to the object, we just add it. Second, if it  

// does match, we update the information with the latest attribute value.  

// Remember to test if the FC Attribute is static or not 

 for(i = 0; i < msgObject->featureClasses->elementCount; i++) 

 { 

  msgFeatureClass = (JausWorldModelFeatureClass)  

msgObject->featureClasses->elementData[i]; 

   

  for(j = 0; j < dbObject->featureClasses->elementCount; j++) 

  { 

   dbFeatureClass = (JausWorldModelFeatureClass)  

dbObject->featureClasses->elementData[j]; 

    

   if(msgFeatureClass->id == dbFeatureClass->id) 

   { 

    // ok, we found it the match 

    break; 

   } 

    

   dbFeatureClass = NULL; 

  } 

  

  if(dbFeatureClass != NULL) 

  { 

   // This is an existing featureClass 

   // Let's check some things (like dataType) 

   msgFcAttribute = (JausWorldModelFeatureClassAttribute)  

msgFeatureClass->attributeHistory->elementData[0]; 

   dbFcAttribute = (JausWorldModelFeatureClassAttribute)  

dbFeatureClass->attributeHistory->elementData[0]; 

    

   if(dbFcAttribute->dataType != msgFcAttribute->dataType) 

   { 

    cError("processModifyVksObjectMessage:%d: No-no! You cannot  

change the dataType of a feature class!\n", __LINE__); 

    continue; 

   } 

 

   // Test and update the FC Estimator 

   if(jausShortPresenceVectorIsBitSet(msgObject->presenceVector,  

JAUS_WM_OBJECT_PV_FC_ESTIMATOR_BIT) &&  

msgFeatureClass->estimator != dbFeatureClass->estimator )  

   { 

    cLog("processModifyVksObjectMessage:%d: WARNING... Changing the  

estimator might have strange consequences.\n", __LINE__); 

    jausShortPresenceVectorSetBit(&dbObject->presenceVector,  

JAUS_WM_OBJECT_PV_FC_ESTIMATOR_BIT); 

    dbFeatureClass->estimator = msgFeatureClass->estimator; 

   } 
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   if(dbFeatureClass->estimator == JAUS_WM_ESTIMATOR_STATIC) 

   { 

    // Static featureClass attribute 

    // Therefore replace the value in dbFeatureClass with the one  

// from msgFeatureClass. Destroy the dbFeatureClass data, we're  

// replacing it  

    vectorDestroy(dbFeatureClass->attributeHistory,  

(void *) featureClassAttributeDestroy); 

 

    // Clone the dataSet (should only be one if static)  

// from msgObject 

    if(msgFeatureClass->attributeHistory->elementCount > 1) 

    { 

     cLog("processModifyVksObjectMessage:%d: WARNING... trying to  

modify a static attribute and providing more than one set  

of attribute values.\n"); 

    } 

     

    dbFeatureClass->attributeHistory = vectorCopy( 

msgFeatureClass->attributeHistory,  

(void *) featureClassAttributeCopy,  

(void *) featureClassAttributeDestroy); 

    if(!dbFeatureClass->attributeHistory) 

    { 

     cError("processModifyVksObjectMessage:%d: Problem cloning the  

msgFeatureClass->attributeHistory\n", __LINE__); 

     continue; 

    } 

     

   } 

   else 

   { 

    // Dynamic Feature Class 

    // Add this msgAttribute to dbAttributeHistory 

    for(j = 0;  

j < msgFeatureClass->attributeHistory->elementCount;  

j++) 

    { 

     // BIG WARNING HERE... You REALLY should only modify with one  

// dataset. If we put in duplicate data sets, it could cause  

// big problems for some estimator algorithms. (I think) 

dbFcAttribute = featureClassAttributeCopy(  

(JausWorldModelFeatureClassAttribute)  

msgFeatureClass->attributeHistory->elementData[j]); 

     if(!dbFcAttribute) 

     { 

      cError("processModifyVksObjectMessage:%d: Problem cloning  

msgFeatureClassAttribute.\n", __LINE__); 

      continue; 

     } 

 

     vectorAdd(dbFeatureClass->attributeHistory, dbFcAttribute); 

    } 

   } 

    

   // Allocate memory for sqlQuery 

   sqlQuery = (char *) calloc(1, 1024); 
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   sprintf(sqlQuery, "UPDATE %s SET fc_estimator_type=%d,  

fc_data_type=%d, attribute=%lld, attribute_timestamp='%s' WHERE  

fc_id = %d AND objectid=%d;", fcTableName,  

dbFeatureClass->estimator, dbFcAttribute->dataType, 

dbFcAttribute->current.unsignedLongValue,  

jausTimeToSqlString(dbFcAttribute->timeStamp),dbFeatureClass->id,  

dbObject->id); 

   queryResult = postgresDbQuery(sqlQuery); 

   free(sqlQuery); 

  

   // Now we'll run the FC Predictor and get its hexBuffer 

   hexString = featureClassPredictorToHexBuffer(dbFeatureClass); 

   if(!hexString) 

   { 

    cError("processModifyVksObjectMessage:%d: Problem with  

featureClassPredictorToHexBuffer!\n", __LINE__); 

    vectorObjectDestroy(dbObject); 

    modifyVksObjectMessageDestroy(modifyMsg); 

    return JAUS_FALSE; 

   } 

  

   sqlQuery = (char *) calloc(1, strlen(hexString) + 128); 

   sprintf(sqlQuery, "UPDATE %s SET fc_estimator_solution = '%s' WHERE  

fc_id=%d AND objectid=%d;", fcTableName, hexString,  

dbFeatureClass->id, dbObject->id); 

   queryResult = postgresDbQuery(sqlQuery); 

   free(hexString); 

   free(sqlQuery); 

  } 

  else 

  { 

   // There was no match for this feature class 

   // So we just clone it and add it to the dbObject 

   dbFeatureClass = featureClassCopy(msgFeatureClass); 

   if(!dbFeatureClass) 

   { 

    cError("processModifyVksObjectMessage:%d: Problem cloning  

msgFeatureClass.\n", __LINE__); 

    continue; 

   } 

   vectorAdd(dbObject->featureClasses, dbFeatureClass); 

    

   // Since this is a new feature class, we'll add it to the fc table 

   sqlQuery = createCreateFeatureClassSql(dbFeatureClass,  

dbObject->id); 

   queryResult = postgresDbQuery(sqlQuery); 

   free(sqlQuery); 

  } 

 } 

 

 // Now we'll put the byteArray version of dbObject back into the DB 

 dataSizeBytes = vectorObjectSizeBytes(dbObject); 

 dataBuffer = (char *) malloc(dataSizeBytes); 

 if(!vectorObjectToBuffer(dbObject, dataBuffer, dataSizeBytes)) 

 { 

  cError("processModifyVksObjectMessage:%d: Problem packing vector  

dbObject to dataBuffer\n", __LINE__); 
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  vectorObjectDestroy(dbObject); 

  modifyVksObjectMessageDestroy(modifyMsg); 

  return JAUS_FALSE; 

 } 

 hexString = bufferToHex(dataBuffer, dataSizeBytes); 

 

 // Now let's update that into the DB 

 sqlQuery = (char *) malloc(strlen(hexString)+128); 

 sprintf(sqlQuery, "UPDATE %s SET vectorObject = '%s' WHERE objectid=%d;",  

objectTableName, hexString, dbObject->id); 

 queryResult = postgresDbQuery(sqlQuery); 

 

 free(dataBuffer); 

 free(hexString); 

 free(sqlQuery); 

 

 // Now we need to update the object estimator 

 hexString = objectPredictorToHexBuffer(dbObject); 

 if(!hexString) 

 { 

  cError("processModifyVksObjectMessage:%d: Problem with  

featureClassPredictorToHexBuffer!\n", __LINE__); 

  vectorObjectDestroy(dbObject); 

  modifyVksObjectMessageDestroy(modifyMsg); 

  return JAUS_FALSE; 

 } 

 

 sqlQuery = (char *) malloc( strlen(hexString) + 128 ); 

 sprintf(sqlQuery, "UPDATE %s SET estimator_solution = '%s' WHERE  

objectid=%d;", objectTableName, hexString, dbObject->id); 

 queryResult = postgresDbQuery(sqlQuery); 

  

 // done with these pointers 

 free(hexString); 

 free(sqlQuery); 

 

 vectorObjectDestroy(dbObject); 

 modifyVksObjectMessageDestroy(modifyMsg); 

  

 modifyCount++; 

 

 return JAUS_TRUE; 

} 

 

Query Future State Message 

// Process Query Future State 

JausBoolean processQueryFutureStateMessage(JausMessage message) 

{ 

 QueryVksObjectFutureStateMessage query; 

 ReportVksObjectFutureStateMessage report; 

 JausMessage txMessage; 

  

 JausWorldModelVectorObjectSpatialDataSet dataSet; 

 JausWorldModelFeatureClass fcClass; 

 JausWorldModelFeatureClassAttribute fcAttribute; 
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 JausTime queryTime = NULL; 

 JausTime tempTime = NULL; 

 int characterCount = 0; 

  

 int queryResult; 

 char sqlQuery[1024] = {0}; 

 char *hexString; 

 unsigned int i = 0; 

 

 GenericPredictor xPredictor; 

 GenericPredictor yPredictor; 

 GenericPredictor fcPredictor; 

  

 PointUtm pointUtm; 

 PointLla pointLla; 

 

 // Unpack Query 

 query = queryVksObjectFutureStateMessageFromJausMessage(message); 

 if(!query) 

 { 

  cError("processQueryFutureStateMessage:%d: Problem unpacking query  

message\n", __LINE__); 

  return JAUS_FALSE; 

 } 

  

 // First, let's ask the database for the object 

 sprintf(sqlQuery, "SELECT object_type, estimator_solution,  

utm_init_longitude FROM %s WHERE objectid=%d;", objectTableName,  

query->objectId); 

 queryResult = postgresDbQuery(sqlQuery); 

 

 // Check the results for errors  

 if(queryResult != 0 || postgresDbGetResultCount() == 0) 

 { 

  cError("processQueryFutureStateMessage:%d: Object (id=%d) not found in  

dataBase.\n", __LINE__, query->objectId); 

  queryVksObjectFutureStateMessageDestroy(query); 

  return JAUS_FALSE; 

 } 

 

 // Create report, NOTE: This also creates the report->vectorObject 

 report = reportVksObjectFutureStateMessageCreate(); 

 if(!report) 

 { 

  cError("processQueryFutureStateMessage:%d: Problem creating report  

message\n", __LINE__); 

  queryVksObjectFutureStateMessageDestroy(query); 

  return JAUS_FALSE; 

 } 

 report->requestId = query->requestId; 

 

 // We're going to need one of these, might as well make it now 

 dataSet = vectorObjectDataSetCreate(); 

 if(!dataSet) 

 { 

  cError("processQueryFutureStateMessage:%d: Error creating dataSet.\n",  
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__LINE__); 

  queryVksObjectFutureStateMessageDestroy(query); 

  reportVksObjectFutureStateMessageDestroy(report); 

  return JAUS_FALSE; 

 } 

 vectorAdd(report->vectorObject->geospatialData, dataSet); 

 

 // Let's setup the basic reportObjectPresenceVector 

 jausShortPresenceVectorSetBit(&report->vectorObject->presenceVector,  

JAUS_WM_OBJECT_PV_OBJECT_ID_BIT); 

 jausShortPresenceVectorSetBit(&report->vectorObject->presenceVector,  

JAUS_WM_OBJECT_PV_FC_COUNT_BIT); 

 jausShortPresenceVectorSetBit(&report->vectorObject->presenceVector,  

JAUS_WM_OBJECT_PV_ATTRIBUTE_COUNT_BIT); 

 jausShortPresenceVectorSetBit(&report->vectorObject->presenceVector,  

JAUS_WM_OBJECT_PV_ATTRIBUTE_TIMESTAMP_BIT); 

 jausShortPresenceVectorSetBit(&report->vectorObject->presenceVector,  

JAUS_WM_OBJECT_PV_POSITION_COUNT_BIT); 

 jausShortPresenceVectorSetBit(&report->vectorObject->presenceVector,  

JAUS_WM_OBJECT_PV_POSITION_TIMESTAMP_BIT); 

  

 report->vectorObject->type =  

atoi(postgresDbGetResultValueByColumnName(0, "object_type")); 

 report->vectorObject->id = query->objectId; 

 

 // Ok, now we get into the future state prediction 

 

 // First, we should setup our query time. This is based on the query type 

 if(query->queryType == VKS_FUTURE_STATE_ABSOLUTE_TIME) 

 { 

  queryTime = jausTimeCopy(query->queryTime); 

  if(!queryTime) 

  { 

   cError("processQueryFutureStateMessage:%d: Error creating  

queryTime\n", __LINE__); 

   queryVksObjectFutureStateMessageDestroy(query); 

   reportVksObjectFutureStateMessageDestroy(report); 

   return JAUS_FALSE; 

  } 

 } 

 else if(query->queryType == VKS_FUTURE_STATE_RELATIVE_TIME) 

 { 

  // We're going to use this JausTime object, so we'll need to create it 

  tempTime = jausTimeCreate(); 

  if(!tempTime) 

  { 

   cError("processQueryFutureStateMessage:%d: Error creating  

queryTime\n"); 

   queryVksObjectFutureStateMessageDestroy(query); 

   reportVksObjectFutureStateMessageDestroy(report); 

   return JAUS_FALSE; 

  } 

   

  jausTimeSetCurrentTime(tempTime); 

  queryTime = jausTimeAddTimeStamp(tempTime, query->queryTime); 

  jausTimeDestroy(tempTime); 
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  if(!queryTime) 

  { 

   cError("processQueryFutureStateMessage:%d: Error creating  

queryTime\n", __LINE__); 

   queryVksObjectFutureStateMessageDestroy(query); 

   reportVksObjectFutureStateMessageDestroy(report); 

 

   return JAUS_FALSE; 

  } 

 } 

 else 

 { 

  cError("processQueryFutureStateMessage:%d: Unknown query type value!  

(type=%d)\n", query->queryType); 

  queryVksObjectFutureStateMessageDestroy(query); 

  reportVksObjectFutureStateMessageDestroy(report); 

  return JAUS_FALSE; 

 } 

 

 // We'll retrieve the BYTEA of the object estimator from the result of the  

// previous query 

 hexString = postgresDbGetResultValueByColumnName(0, "estimator_solution"); 

 

 // Take this hexString and shove it! No really, let's do something useful  

// with it, like make a couple object predictors 

 xPredictor = predictorFromHexBuffer(hexString + characterCount,  

&characterCount); 

 yPredictor = predictorFromHexBuffer(hexString + characterCount,  

&characterCount); 

  

 // ok... we should test these 

 if(!xPredictor || !yPredictor) 

 { 

  cError("processQueryFutureStateMessage:%d: Error creating x and y  

predictors.\n", __LINE__); 

  jausTimeDestroy(queryTime); 

  queryVksObjectFutureStateMessageDestroy(query); 

  reportVksObjectFutureStateMessageDestroy(report); 

  return JAUS_FALSE; 

 } 

 

 // We'll need a spot to put these values 

 pointLla = pointLlaCreate(); 

 if(!pointLla) 

 { 

  cError("processQueryFutureStateMessage:%d: Error creating pointLla.\n",  

__LINE__); 

  genericPredictorDestroy(xPredictor); 

  genericPredictorDestroy(yPredictor); 

  jausTimeDestroy(queryTime); 

  queryVksObjectFutureStateMessageDestroy(query); 

  reportVksObjectFutureStateMessageDestroy(report); 

  return JAUS_FALSE; 

 } 

 

 // We'll also need one of these b/c the estimators are done in UTM space 

 pointUtm = pointUtmCreate(); 



 

168 

 if(!pointUtm) 

 { 

  cError("processQueryFutureStateMessage:%d: Error creating pointUtm.\n",  

__LINE__); 

  genericPredictorDestroy(xPredictor); 

  genericPredictorDestroy(yPredictor); 

  jausTimeDestroy(queryTime); 

  queryVksObjectFutureStateMessageDestroy(query); 

  reportVksObjectFutureStateMessageDestroy(report); 

  return JAUS_FALSE; 

 } 

  

 // Ok... now THIS is our future estimator right here  

 pointUtm->xMeters = genericPredictorEstimate(xPredictor,  

jausTimeToSeconds(queryTime)); 

 pointUtm->yMeters = genericPredictorEstimate(yPredictor,  

jausTimeToSeconds(queryTime)); 

 

 // We are done with our predictors, and should destroy them 

 genericPredictorDestroy(xPredictor); 

 genericPredictorDestroy(yPredictor); 

 

 // We need to transform from UTM to LLA to put this in the message 

 // Since we don't know what UTM zone this object was in, we can ask the  

 // DB for the utm_init_longitude and initialize utmLib with that 

 pointLla->longitudeRadians =  

atof(postgresDbGetResultValueByColumnName(0, "utm_init_longitude")); 

  

 // Now we'll call utmInit with that point 

 utmConversionInit(pointLla); 

  

 // We're done with this, so we'll get rid of it 

 pointLlaDestroy(pointLla); 

  

 // OK... now we're free (and safe!) to use utmLib to do the reprojection  

 pointLla = pointUtmToPointLla(pointUtm); 

 if(!pointLla) 

 { 

  cError("processQueryFutureStateMessage:%d: Error creating pointLla.\n",  

__LINE__); 

  jausTimeDestroy(queryTime); 

  queryVksObjectFutureStateMessageDestroy(query); 

  reportVksObjectFutureStateMessageDestroy(report); 

  return JAUS_FALSE; 

 } 

  

 // Lastly, we'll add our estimate to the reportObject 

 vectorAdd(dataSet->dataPoints, pointLla); 

  

 // One last thing to do is go ahead and put the  

// objectTime stamp in the message 

 jausTimeDestroy(dataSet->timeStamp); 

 dataSet->timeStamp = jausTimeCopy(queryTime);  

  

 // done with our UTM point, let's destroy it 

 pointUtmDestroy(pointUtm); 
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 // GREAT! Now we have done the object estimate... we have to do the  

// feature class estimates. Luckily, they are easier (I think) 

 for(i = 0; i < query->featureClassCount; i++) 

 { 

  // First, we'll ask the DB if this object & fcId exists 

  // We're only going to need the fc_estimator_solution for each result  

// (which should only be 1!) 

 

// NOTE: We'll use our "snapshot" view here. This allows us easy access  

// to the JOIN of objectTable and fcTable 

  sprintf(sqlQuery, "SELECT fc_id, fc_data_type, fc_estimator_solution  

FROM snapshot WHERE objectid=%d AND fc_id=%d;", query->objectId,  

query->featureClassIds[i]); 

  queryResult = postgresDbQuery(sqlQuery); 

   

  // Test the results 

// REALLY only should be 1 result 

  if(queryResult != 0 || postgresDbGetResultCount() != 1)   

{ 

   cError("processQueryFutureStateMessage:%d: FeatureClass (id=%d) for  

object (id=%d) not found in dataBase.\n", __LINE__,  

query->featureClassIds[0], query->objectId); 

   continue; 

  } 

   

  // Great. Now we need to add a featureClass to our object 

  fcClass = featureClassCreate(); 

  if(!fcClass) 

  { 

   cError("processQueryFutureStateMessage:%d: FeatureClass  

constructor.\n", __LINE__); 

   continue; 

  } 

   

  fcAttribute = featureClassAttributeCreate(); 

  if(!fcAttribute) 

  { 

   cError("processQueryFutureStateMessage:%d: FeatureClass  

constructor.\n", __LINE__); 

   featureClassDestroy(fcClass); 

   continue; 

  } 

   

  // Stick some basic fc info in here  

  fcClass->id = atoi(postgresDbGetResultValueByColumnName(0, "fc_id")); 

  fcAttribute->dataType =  

atoi(postgresDbGetResultValueByColumnName(0, "fc_data_type")); 

   

  // Ok.... now we have to get our estimator and run it 

  // get the fc_estimator_sol from our db results 

  hexString =  

postgresDbGetResultValueByColumnName(0, "fc_estimator_solution"); 

  characterCount = 0; 

  

  // Take this hexString and ... do something useful with it, like make a  

// fc predictor 

  fcPredictor =  
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predictorFromHexBuffer(hexString+characterCount, &characterCount); 

  if(!fcPredictor) 

  { 

   cError("processQueryFutureStateMessage:%d: FeatureClass predictor  

failed.\n", __LINE__); 

   continue; 

  } 

   

  featureClassAttributeFromDouble(fcAttribute,  

genericPredictorEstimate(fcPredictor,  

jausTimeToSeconds(queryTime))); 

   

  jausTimeDestroy(fcAttribute->timeStamp); 

  fcAttribute->timeStamp = jausTimeCopy(queryTime); 

   

  // Add this featureClass and attribute to report->vectorObject 

  vectorAdd(fcClass->attributeHistory, fcAttribute); 

  vectorAdd(report->vectorObject->featureClasses, fcClass); 

   

  // We're done with this predictor, so we'll get rid of it 

  genericPredictorDestroy(fcPredictor); 

 } 

   

 // Send the report 

 txMessage = reportVksObjectFutureStateMessageToJausMessage(report); 

 if(txMessage) 

 { 

  if(query->scFlag == JAUS_SERVICE_CONNECTION_MESSAGE) 

  { 

   // Service Connection Query 

   txMessage->scFlag = JAUS_SERVICE_CONNECTION_MESSAGE; 

   txMessage->sequenceNumber = message->sequenceNumber; 

  } 

  else 

  { 

   // Non SC Query 

   txMessage->scFlag = JAUS_NOT_SERVICE_CONNECTION_MESSAGE; 

   txMessage->sequenceNumber = 0;      

  } 

   

  txMessage->source->id = wmvks->address->id; 

  txMessage->destination->id = query->source->id; 

   

  nodeManagerSend(wmvksNmi, txMessage); 

  jausAddressToString(txMessage->destination, sqlQuery); 

  jausMessageDestroy(txMessage); 

 } 

  

 // Clean-up 

 jausTimeDestroy(queryTime); 

  

 reportVksObjectFutureStateMessageDestroy(report); 

 queryVksObjectFutureStateMessageDestroy(query); 

 

 return JAUS_TRUE; 

} 
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Prediction Algorithm Solver Functions 

The following is the solver functions for the polynomial and linear predictors. These are 

included to show the details of the SNOPP implementation and how GSL is used. 

Linear Predictor 

// Linear Predictor Solver Function 

int linearEstimatorSolver(GenericPredictor linearEst) 

{ 

 // Solution in the form Y = beta0 + beta1 * X 

  

 unsigned int i = 0; 

 unsigned int startIndex = 0; 

  

 double *xArray = NULL; 

 double *yArray = NULL; 

 

 LinearEstimatorSolution sol = NULL;  

  

 // Solve the problem using the LinearEstimator algorithm 

 if(!linearEst) 

 { 

  cError("linearEstimator:%d: Pointer is NULL.\n", __LINE__); 

  return CIMAR_FALSE; 

 } 

  

 if(!linearEst->dataArray) 

 { 

  cError("linearEstimator:%d: Cannot solve because linearEst->dataArray  

is NULL.\n", __LINE__); 

  return CIMAR_FALSE; 

 } 

  

 sol = (LinearEstimatorSolution) linearEst->solutionStruct; 

 

 if(linearEst->dataSize < sol->confMinimumPointCount) 

 { 

  cError("linearEstimator:%d: Cannot solve because linearEst->dataSize <=  

sol->confMinimumPointCount (%d < %d).\n", __LINE__,  

linearEst->dataSize, sol->confMinimumPointCount); 

  return CIMAR_FALSE; 

 } 

  

 if(linearEst->dataSize > sol->confMaximumPointCount) 

 { 

  startIndex = linearEst->dataSize - sol->confMaximumPointCount; 

  linearEst->dataSize = sol->confMaximumPointCount; 

 } 

  

 // Allocate memory for the x array 

 xArray = (double *) calloc(linearEst->dataSize, sizeof(double)); 

 if(!xArray) 
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 { 

  cError("linearEstimator:%d: Cannot solve because error allocating  

memory for xArray.\n", __LINE__); 

  return CIMAR_FALSE; 

 } 

 

 // Allocate memory for the y array 

 yArray = (double *) calloc(linearEst->dataSize, sizeof(double)); 

 if(!yArray) 

 { 

  cError("linearEstimator:%d: Cannot solve because error allocating  

memory for yArray.\n", __LINE__); 

  free(xArray); 

  return CIMAR_FALSE; 

 } 

  

 // Setup StartX 

 sol->startX = linearEst->dataArray[startIndex].x; 

  

 // Setup the xArray & yArray 

 for(i = 0; i < linearEst->dataSize; i++) 

 { 

  xArray[i] = linearEst->dataArray[startIndex + i].x - sol->startX; 

  yArray[i] = linearEst->dataArray[startIndex + i].y; 

 } 

  

 gsl_fit_linear(xArray, 1, yArray, 1, linearEst->dataSize, &sol->beta0,  

&sol->beta1, &sol->cov00, &sol->cov01, &sol->cov11, &sol->chiSq); 

 

 free(yArray); 

 free(xArray); 

  

 return CIMAR_TRUE; 

} 

 

Polynomial Predictor 

// Polynomial Predictor Solver Function 

int polyEstimatorSolver(GenericPredictor polyEst) 

{ 

 int i = 0, j = 0, k = 0; 

 double yMean = 0; 

 

 // Need storage for interim solutions 

 

 // power values from interim solutions of size confWindowCount 

 int *solPower = NULL;  

 double *solBeta = NULL;  

  

 // Interim Solution Data 

 DataPoint *tempData = NULL; // subset of dataArray for interim solutions 

 int tempDataSize = 0; 

 

 // Solution parameters 

 double *pValue;   // need one of these for each confMaximumOrder 

 double *tempBeta;   // need confMaximumOrder+1 
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 double *typeOneSSModel; // need confMaximumOrder+1 

 double ssError; 

 double msError; 

 double yEstimate = 0; 

 

 PolyEstimatorSolution sol = NULL;  

  

 sol = (PolyEstimatorSolution) polyEst->solutionStruct; 

 

 // Solve the problem using the PolyEstimator algorithm 

 if(!polyEst) 

 { 

  cError("polyEstimator:%d: Pointer is NULL.\n", __LINE__); 

  return -1; 

 } 

  

 if(!polyEst->dataArray) 

 { 

  cError("polyEstimator:%d: Cannot solve because polyEst->dataArray is  

NULL.\n", __LINE__); 

  return -1; 

 } 

  

 if(polyEst->dataSize < sol->confMinimumPointCount) 

 { 

  cError("polyEstimator:%d: Cannot solve because polyEst->dataSize <  

sol->confMinimumPointCount (%ld < %d).\n", __LINE__,  

polyEst->dataSize, sol->confMinimumPointCount); 

  return -1; 

 } 

 

 // Allocate memory for solPower 

 solPower = (int *) calloc(sol->confWindowCount, sizeof(int)); 

 if(!solPower) 

 { 

  cError("polyEstimator:%d: Problem allocating memory for solPower.\n",  

__LINE__); 

  return -1; 

 } 

 

 // Allocate memory for solBeta  

// This is [confWindowCount][confMaximumOrder+1] 

 solBeta = (double *) calloc((sol->confWindowCount *  

(sol->confMaximumOrder+1)), sizeof(double)); 

 if(!solBeta) 

 { 

  free(solPower); 

  cError("polyEstimator:%d: Problem allocating memory for solBeta.\n",  

__LINE__); 

  return -1; 

 } 

  

 pValue = (double *) calloc(sol->confMaximumOrder+1, sizeof(double)); 

 if(!pValue) 

 { 

  free(solBeta); 

  free(solPower); 
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  cError("polyEstimator:%d: Problem allocating memory for pValue.\n",  

__LINE__); 

  return -1; 

 } 

 

 tempBeta = (double *) calloc(sol->confMaximumOrder+1, sizeof(double)); 

 if(!tempBeta) 

 { 

  free(pValue); 

  free(solBeta); 

  free(solPower); 

  cError("polyEstimator:%d: Problem allocating memory for tempBeta.\n",  

__LINE__); 

  return -1; 

 } 

 

 typeOneSSModel =  

(double *) calloc(sol->confMaximumOrder+1, sizeof(double)); 

 if(!typeOneSSModel) 

 { 

  free(tempBeta); 

  free(pValue); 

  free(solBeta); 

  free(solPower); 

  cError("polyEstimator:%d: Problem allocating memory for  

typeOneSSModel.\n", __LINE__); 

  return -1; 

 } 

 

 // Ok... now we can solve this problem 

 // First, let go through the data and collect some statistics 

 // Calculate deltaXMean 

 sol->deltaXMean = 0; 

 for(i = 1; i < polyEst->dataSize; i++) 

 { 

  sol->deltaXMean += polyEst->dataArray[i].x - polyEst->dataArray[i-1].x; 

 } 

 sol->deltaXMean /= polyEst->dataSize; 

 

 // We need to setup sol->power for this analysis 

 sol->power = sol->confMaximumOrder; 

 

 // *********************** NOTE ******************************* 

 // We need to put a check in here to ensure that confWindowStepSize >  

// confMaximumOrder. If that is NOT true, we can still do the analysis,  

// but we have to skip X generations of the window until tempData >=  

// confMaximumOrder. Really we should NOT analyze less that  

// PE_MINIMUM_DATA_FACTOR * confMaximumOrder data in a generation 

 i = 0; 

 tempDataSize = sol->confWindowStepSize; 

 while(tempDataSize < sol->confMaximumOrder * PE_MINIMUM_DATA_FACTOR)  

 { 

  i++; 

  tempDataSize = sol->confWindowStepSize * i; 

 } 

  

 // Analysis of windowCount 
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 // NOTE: the i=0 is NOT a bug, it is left out because the loop above sets  

// up our i value 

 for(; i < sol->confWindowCount; i++) 

 { 

  // Allocate memory for tempData 

  tempDataSize = sol->confWindowStepSize*(i+1); 

   

  // Need to check if tempDataSize > polyEst->dataSize 

  // If this is true, we've run out of data! 

  // In this case, we'll run the analysis to the end of the data,  

// then exit 

  if(tempDataSize > polyEst->dataSize) 

  { 

   tempDataSize = polyEst->dataSize; 

  } 

   

  // Check if previously allocated 

  if(tempData != NULL) free(tempData); 

 

  // this is equal to i * confWindowStepSize 

  tempData = (DataPoint *) malloc(sizeof(DataPoint) * tempDataSize); 

 

  // Copy subset from dataArray 

  memcpy(tempData, &polyEst->dataArray[polyEst->dataSize-tempDataSize],  

tempDataSize*sizeof(DataPoint)); 

 

  // WOO-HOO... let's fit a polynomial 

  fitPolynomial(tempData, tempDataSize, sol->confMaximumOrder,  

tempData[0].x, &solBeta[i*sol->confMaximumOrder]); 

 

  // Calculate some statistics parameters 

  // Note, right now the only ones acutally needed (or used) are ssError 

  ssError = 0; 

  for(j=0; j < tempDataSize; j++) 

  { 

   yMean += tempData[j].y; 

   yEstimate = estimate(sol->confMaximumOrder,  

tempData[j].x-tempData[0].x, &solBeta[i*sol->confMaximumOrder]); 

   ssError += pow(tempData[j].y - yEstimate, 2); 

  } 

  yMean /= tempDataSize; 

   

  // Calculate the msError for F-Test statistic 

  msError = ssError / (tempDataSize - (sol->confMaximumOrder+1)); 

 

  // Now its gets complicated 

  // we need to fit a polynomial of each order 1, 2, 3...  

// confMaximumOrder 

  for(j = 1; j <= sol->confMaximumOrder; j++) 

  { 

   // fit a polynomial to the dataset with a power of j 

   // put the results in tempBeta 

   fitPolynomial(tempData, tempDataSize, j, tempData[0].x, tempBeta); 

    

   // take our newly fit lower-order polynomial and collect some data 

   typeOneSSModel[j] = 0; 

   for(k = 0; k < tempDataSize; k++) 
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   { 

    yEstimate = estimate(j, tempData[k].x-tempData[0].x, tempBeta); 

    typeOneSSModel[j] += pow(yEstimate - yMean, 2); 

   } 

    

   // Type I SS 

   // typeOneSSModel[j] - typeOneSSModel[j-1] 

    

   // F-Statistic 

   // typeOneSumSquares[j] / msError 

      

   // P Critical Value from F-Test(df1=1, df2=n-(k+1)) 

   pValue[j] = gsl_cdf_fdist_Q((typeOneSSModel[j] –  

typeOneSSModel[j-1])/msError, 1,  

(tempDataSize-(sol->confMaximumOrder+1))); 

  } 

 

  // Now we have to analyze these p-values and find the proper order 

// this is the minimum order we are analyzing 

  j = sol->confMinimumOrder; 

  while(j < sol->confMaximumOrder && pValue[j+1] <  

sol->confPCriticalValue) j++; 

  solPower[i] = j; 

 

  // Usually we would draw conclusions once all the solutions are known 

  // But we want the lowest order with the most history (in case of a tie  

// for order). Since the history is increasing and order is being  

// minimized, we can actually do this during evaluation 

   

  // The current solution has an order less (or equal),  

// therefore it is better 

  if(solPower[i] <= sol->power) 

  { 

   sol->power = solPower[i]; 

   sol->historySize = tempDataSize; 

   sol->startX = tempData[0].x; 

    

   // We solve the final polynomial for this dataset  

// with the proper power 

   fitPolynomial(tempData, tempDataSize, sol->power,  

tempData[0].x, sol->beta); 

  } 

 

  // This is a special check for tempDataSize == polyEst->dataSize 

  // This was a sign that we were at the end of the data and need to  

// exit, like now 

  if(tempDataSize == polyEst->dataSize) 

  { 

   break; 

  } 

 } 

  

 // Free Memory 

 free(tempData); 

 free(typeOneSSModel); 

 free(tempBeta); 

 free(pValue); 
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 free(solBeta); 

 free(solPower); 

 return 0; 

} 

 
// Polynomial Least-Squares Fit 

int fitPolynomial(DataPoint *data, int dataSize, int power, double xOffset, 

double *coefficients) 

{ 

 int i, j; 

 double chisq = 0.0; 

 gsl_matrix *xMatrix = NULL; 

 gsl_matrix *covarianceMatrix = NULL; 

 

 gsl_vector *yVector = NULL; 

 gsl_vector *solutionVector = NULL; 

 

 gsl_multifit_linear_workspace *workspace = NULL; 

 

 // power + 1 because of constant parameter 

 power++; 

  

 // Create an xMatrix of size (dataSize x power) 

 xMatrix = gsl_matrix_alloc(dataSize, power); 

 

 // Create the yVector of size (dataSize) 

  yVector = gsl_vector_alloc(dataSize); 

 

 // Allocate the solution vector 

 solutionVector = gsl_vector_alloc(power); 

 

 // covariance matrix allocation 

 covarianceMatrix = gsl_matrix_alloc(power, power); 

 

 // Allocate workspace 

 workspace  = gsl_multifit_linear_alloc(dataSize, power); 

 

 // Populate the xMatrix and yVector 

 for(i = 0; i < dataSize; i++) 

 {   

  for(j = 0; j < power; j++) 

  { 

   gsl_matrix_set(xMatrix, i, j, pow(data[i].x-xOffset, j)); 

  } 

      

  gsl_vector_set(yVector, i, data[i].y); 

 } 

 

 // Least-Squares Fit of data 

 gsl_multifit_linear(xMatrix, yVector, solutionVector, covarianceMatrix,  

&chisq, workspace); 

 

 for(i = 0; i < power; i++) 

 { 

  coefficients[i] = gsl_vector_get(solutionVector,i); 

 } 
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 // Free allocated resources 

 gsl_matrix_free(xMatrix); 

 gsl_matrix_free(covarianceMatrix); 

 gsl_vector_free(yVector); 

 gsl_vector_free(solutionVector); 

 gsl_multifit_linear_free(workspace); 

 

 return --power; 

} 
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APPENDIX C 
NUMERIC EXAMPLE 

The purpose of this appendix is to present a numeric example of the Statistics-Based Nth 

Order Polynomial Predictor (SNOPP) which was presented in Chapter 3. Of the purposes of this 

example, a known 3rd order polynomial will be used to generate a series of data. A random 

quantity of error is added to these data points to better represent real world data. The resulting 

dataset is then evaluated and the resulting polynomial is determined using the SNOPP algorithm. 

The following 3rd order polynomial was used to generate the sample dataset: 

This was used to generate a dataset with 40 values which are shown 

in Table C-1. The SNOPP algorithm first looks to fit a high-order polynomial to the dataset. For 

this example a 5th order polynomial was used. The least-squares method was applied as outlined 

in chapter 3 (Equation 3-7) and the polynomial solution yielded was 

 The SNOPP 

algorithm now investigates each of the  values to see if they are statistically significant to the 

dataset. 

To do so, a polynomial of each order up to the 5th order must be calculated using the same 

least-squares method. This yields a collection of polynomials which can be sequentially tested in 

a Type I Sum of Squares method. The F-Statistic for each  is calculated as shown in Equation 

3-8. First the Mean Squared Error (MSE) of the dataset is calculated using Equation 3-9 as 

follows: 
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Next, the SSModel term is calculated for each  using equation 3-10. The solution for  

is shown. The others are done similarly and are listed in table C-2. Note that the  term was 

found previously by fitting a polynomial to the dataset with a maximum order of 4. 

 

 

 

Finally, the F-Value for each order can be calculated using Equation 3-8. The example below is 

for the 4th order test. Others are similar and results are included in Table C-2. 

 

 

 

Finally, the P-Critical values are analyzed. Here, the 4th order and higher terms are rejected 

because they have a P-Critical value above the 0.2 threshold which indicates a greater than 20% 

chance that those terms are not statistically significant. This indicates the true solution is 3rd 

order. Therefore the 3rd order polynomial fitted previously is said to be the proper solution. Here 

the solution is  This is 
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reasonably close to the original polynomial used to generate the data which was 
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Table C-1 Dataset used in numeric example 
n X Value Y Value Y Value with Error Error 
1 0 626 626.527643 -0.527643 
2 0.2 626.22064 626.641172 -0.420532 
3 0.4 626.56912 625.787754 0.781366 
4 0.6 627.07328 628.071084 -0.997804 
5 0.8 627.76096 627.510589 0.250371 
6 1 628.66 627.010799 1.649201 
7 1.2 629.79824 629.510619 0.287621 
8 1.4 631.20352 630.902289 0.301231 
9 1.6 632.90368 631.187051 1.716629 

10 1.8 634.92656 634.287322 0.639238 
11 2 637.3 638.266131 -0.966131 
12 2.2 640.05184 641.14496 -1.09312 
13 2.4 643.20992 643.671636 -0.461716 
14 2.6 646.80208 645.279907 1.522173 
15 2.8 650.85616 652.397536 -1.541376 
16 3 655.4 655.518128 -0.118128 
17 3.2 660.46144 660.469276 -0.007836 
18 3.4 666.06832 665.11101 0.95731 
19 3.6 672.24848 671.784873 0.463607 
20 3.8 679.02976 678.361989 0.667771 
21 4 686.44 686.564124 -0.124124 
22 4.2 694.50704 696.33044 -1.8234 
23 4.4 703.25872 701.383478 1.875242 
24 4.6 712.72288 712.838421 -0.115541 
25 4.8 722.92736 723.331611 -0.404251 
26 5 733.9 734.933894 -1.033894 
27 5.2 745.66864 745.143632 0.525008 
28 5.4 758.26112 756.637866 1.623254 
29 5.6 771.70528 771.254488 0.450792 
30 5.8 786.02896 784.966236 1.062724 
31 6 801.26 802.414973 -1.154973 
32 6.2 817.42624 815.503091 1.923149 
33 6.4 834.55552 835.913328 -1.357808 
34 6.6 852.67568 851.049287 1.626393 
35 6.8 871.81456 872.889215 -1.074655 
36 7 892 891.107437 0.892563 
37 7.2 913.25984 911.984246 1.275594 
38 7.4 935.62192 934.408955 1.212965 
39 7.6 959.11408 959.920287 -0.806207 
40 7.8 983.76416 982.771937 0.992223 
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Table C-2 Statistical Values from numeric example 
Order SSModel F-Value P-Critical Value 
1 385980.150741 319128.952406 < 0.0001 
2 444363.750019 48271.645160 < 0.0001 
3 445587.652161 1011.924079 < 0.0001 
4 445588.491338 0.693833 0.410677 
5 445589.206968 0.591684 0.447080 
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